	NZ NATIONAL TESTING FACILITIES	
	Jniversities, Polytechnics and CRIs	
LABORATORY	Industrial Materials Specialist Dr Karnika De Silva - NZ Product Accelerator <u>k.desilva@auckland.ac.nz</u> Phone: 09 923 6614, Mobile: 021 466 954	KEY C
	PRODUCT, MATERIAL PERFORMANCE TESTING	
	DID YOU KNOW	Andy Hilton Tensile testing (temp. controlled to 1200or Macro /micro Hardness Testing
AUT UNIVERSITY	Tensile tests measure the force required to break a specimen and the extent to which the specimen stretches or elongates to that breaking point. Tensile tests produce a stress-strain diagram, which is used to determine tensile modulus	Impact Testing Fatigue Testing (MTS 505G2 SilentFlo HP Metallographic Examination Surface Texture Analyser
	Notched Izod Impact is a single point test that measures a materials resistance to impact from a swinging pendulum.	Conrad Lendrum Mechanical testing (we also use Quest inte area).
CALLAGHAN INNOVATION, GRACEFIELD	Notched Charpy Impact - a three-point test that measures a materials resistance to impact from a swinging pendulum	Electrical/Magnetic testing (including HV as a commercial sub-contractor for some H Surface/coatings tests (also includes profi
	Capillary Rheometry - measures apparent viscosity (resistance to flow) using shear rates at specific temperatures. Useful in mould flow design analysis. processing parameters, for quality control, degradation, thermal stability etc	Reactivity thermal testing (TGA, DSC, vari Materials density, Optical, Wetting behave Margaret Leonard • Tensile Tester
CHRISTCHURCH POLYTECH INSTITUTE OF TECHNOLOGY	Dynamic Mechanical Analysis determines elastic modulus (or storage modulus, G'), viscous modulus (or loss modulus, G'') and damping coefficient (Tan Delta) as a function of temperature, frequency or time	Optical Analyser Melt flow Index Shadow graph Accelerated UV tester
GNS	Melt Flow Rate - rate of extrusion of thermoplastics through an orifice at a prescribed temperature and load. Determines the extent of degradation of plastic as a result of molding	John kennedy Micro hardness testing system
	Brookfield Cone/Plate Viscometer/Rheometer gives researchers a sophisticated instrument for routinely determining absolute viscosity of fluids in small sample volumes. Its cone and plate geometry provides the precision necessary for development of complete rheological data.	Dawn Smith Anti-fungal and anti-microbal Rheometry Brookfield Rotational and Cone& Plate Vi Polymer Labs GPC Instron & Zwick Testing Machines
SCION	Thermogravimetric Analysis- Loss in weight over specific temperature ranges provides an indication of the composition of the sample, including volatiles and inert filler, as well as indications of thermal stability.	Impact Tester Cyclic Cree/Humidity Testing Box/Packaging testing QUV Biodegradation & Compostability testing Injection Moulder

CONTACT / FACILITIES

2)
n
arity as a commercial provider of some services in this
grify as a commercial provider of some services in mis
rity sub-contracts)
and high B-field. We also use Powerlabs (ChCh-based)
V work)
ometer and thin-film reflectance)
hus reactors esp. fluidised hed)
IOURS
scometers

DID YOU KNOW

Gas analysis systems-: permeation analyzers of polymers, leak detectors and headspace analyzers of products. For production environments and quality control applications.

Cone calorimeter measures heat release rate, total heat released, effective heat of combustion, mass loss rate, time to ignition, specific extinction area, CO and CO2 production during exposure to

Paar Physica UDS 200 rotational rheometer - to measure shear viscosity, viscoelastic functions, creep, and yield stress of materials using different geometries such as cone-and-plate, parallel-plate, and concentric cylinder

Gas analysis systems-: permeation analyzers of polymers, leak detectors and headspace analyzers of products. For production environments and quality control applications.

Accelerated Weathering (QUV) - simulates damaging effects of long-term outdoor exposure of materials & coatings to most aggressive components of weathering - UV radiation, moisture and heat. Moisture is provided by .forced condensation, and temperature is controlled by heaters. No direct correlation made between accelerated weathering duration & actual outdoor exposure duration.

Xenon-Arc - Accelerated weathering simulates the damaging effects of long-term outdoor exposure of materials & coatings by exposing samples to varying conditions of aggressive components of weathering light, moisture & heat. A xenon arc light source provide a radiation spectrum that simulates natural sunlight. Moisture is provided by a humidifier & direct spray & temperature is controlled by heaters. No direct correlation between accelerated weathering duration & actual

Thermal Conductivity: The TCP advanced / TC-30, is a nondestructive testing - measures the thermal properties. Measurements -TC and Effusivity (VkpCp) Other factors -density (p) heat capacity (Cp), sample thickness & temperature. TC- ability of a material to conduct heat while TE is defined as the square root of the product of

Cryostat Microtome - a small, portable and convenient instrument with a hand wheel/lever.. The compact chamber ensures rapid cool-down times, An insulated cover is used to ensure maximum efficiency of the refrigeration system & to reduce frosting when the unit is not in use.

Karnika De Silva (may direct to Researc

Impact Tester - Charpy (Ceast Resil 25) Impact Tester - IZOD (Drop-weight Impac Instron UTM - Static (Model 5567, 1185, Instron UTM - Dynamic (Model 8802) HDT - Heat Deflection Tester Hardness Testing, Shore A, D Hardness Testing, Barcol, Hardness Testin Corrosion test facilities Accelerated Ageing Tester (Contherm) Capillary Rheometer Cone Calorimeter (Mass loss) Gas permeation tester Linear Thermal Expansion by TMA or Dila MFI - Melt Flow Index / MFR - Melt Flow QUV Tester (Accelerated Weathering) Thermal conductivity tester (TC-30) UV Transmission Cone and Plate Rheometer Environmental Chamber (Contherm) Cone & Plate Rheometer John Duncan Acoustic lab faciities include: **Reverberation** room Transmission loss suite Low noise wind tunnel Duct noise wind tunnel Anechoic room Automotive Instrumentation room Control and robotics lab Thermodynamics and advanced energy a Industrial aerodynamics lab Fire engineering lab faciities include: Cone calorimeter Lateral Ignition & Flame Transport (LIFT) Wind tunnel Small-scale furnace Atrium smoke control and water mist syste High Voltage lab **Power Electronics** Nanofabrication

John Duncan or Kevin Stobbs

Hardness testing Fatigue testing Corrosion test facilities Heat flow measurement using Differential Material Characterisation using Dynamic A Impact testing Tensile and Compression testing

UNIVERSITY OF AUCKLAND

UNIVERSITY OF CANTERBURY

h Centres)
t Tester)
, 1186)
ng, Kockwell B, C
atomotor
Rate
nd material systems lab
est apparatus
ams
Scanning Calorimeter
Mechanical Analyser

UNIVERSITY OF OTAGO

UNIVERSITY OF WAIKATO

DID YOU KNOW

Large scale forgings and extrusions of alloys can be carried out. Current work is mainly using titanium and titanium alloys.

Servo-hydraulic tensile machine enables fatigue pre-crackinmg for fracture toughness testing. fatigue testing in tension and compression with a non-zero mean stress can be done.

Batch compounder - used for processing rubber.

DSC -differential scanning calorimeter / Tg = Glass Transition Temperature amorphous polymer changes state from a hard brittle state to a soft rubbery state. Tm = melting point of crystalline polymer melts, Tc = polymer crystallizes upon heating or cooling, Δ Hm = absorbed energy (joules/gram) in melting, Δ Hc = released energy (joules/gram) while crystallizing.

XRD - X-ray diffraction provides most definitive structural analysis information - interatomic distances and bond angles

X-ray photoelectron spectroscopy (XPS) - a surface-sensitive quantitative spectroscopic technique that measures elemental composition. Can be used to analyze surface chemistry of a material with or without fracturing, cutting, scraping in air etc

Microtome - is a tool used to cut extremely thin slices of material allowing for the preparation of samples for observation under transmitted light or electron radiation. Microtomes use steel, glass, or diamond blades.

MATERIALS COMPOSITION AND ANALYTICAL TESTING

DID YOU KNOW

Atomic force microscopy (AFM)- a technique for analyzing surface of a rigid material all the way down to the level of the atom. Magnifies surface features up to 10⁸times & produces 3-D images of the surface. Used to solve processing & materials problems in electronics, telecom, biology and other high-tech industries.

Craig Grant (Research Office) or Robert

Chem Dept Iso-trace facilities include: Certification of sucrose adulteration in hor Thermal maturity and genetic characterisc hydrogen isotope ratios of C1-C3 hydroco Determination of Individual Components in Chromatography (ASTM D6730) http://neon.otago.ac.nz/consulting/isotr

Craig Grant (Research Office) or Rachel

tensile tester - Instron bench
impact rig
thermal resistance
vapoour resistance
thermal conductance
climate chamber/human testing
abrasion resistance
air permeability
accelerated light aging
dimensional change
crocking test
visual change/assessment

Brian Gabbitas (HOD)

Instron 8801 100 kN Axial Servo-Hydrau Instron 33R4205 50kN tensile machine 100 tonne vertical press 300 tonne extrusion press Vacuum furnace Charpy impact testing machine Accelerated weathering tester Injection moulder Extruders x 2, Pelletiser Batch compounder, Compression moulder Heated press Differential scanning calorimeter (DSC) Dynamic mechanical analyser (DMTA) Raman spectrometer - hyphenated with D Thermal gravimetric analysis XRD, including heated stage and 3D imag BET surface area

Bomb calorimeter Compression moulder

Compression module

Andy Hilton

Confocal Raman/ Atomic Force microscop High Resolution Scanning Electron Microsco

Conrad Lendrum

Imaging – (2 SEMs + 2 operator FTEs – microscopy options) Chemical elemental (EDS, XRD, FTIR, NMR Phase crystal structure (EBSD, XRD)

AUT UNIVERSITY

CALLAGHAN INNOVATION, GRACEFIELD

Van Hale
ney (AOAC 1999 protocol)
ation of natural gas (Mud gas isotope logging, carbon and arbons)
Spark Ignition Engine Fuels by High-Resolution Gas
ace/applications.php
Laing (Textile Research)
lia Dumannia Tastina Casta
Dynamic Testing System
SC
ing
ppe with EDS & EBSD (Hitachi SU-70 (2)
1 Hi-res + 1 environmental chamber, + various optical
(liquid and solid) etc.)

GNS

SCION

UNIVERSITY OF AUCKLAND

DID YOU KNOW

Gel Permeation Chromatography (GPC) - a high performance liquid chromatography technique for the separation of components based on their molecular size in solution, characterizing the molecular weight distribution of polymers, separation of discrete components

Humidity testing - data generated by can be important in planning materials selection, paints and coatings, and expected lifetime of a product

Humidity Chambers- continuous measurement of ambient humidity in the natural atmosphere on a stationary platform

Resin infusion and RTM light facilities – Stereo-photogrammetry system for dynamic thickness measurements during flexible mould processes.

Liquid chromatography-mass spectrometry (LC/MS) - technique with high sensitivity and specificity. Used to analyze compounds that are too large, too polar, or too thermally labile for the GC technique. Application is oriented towards the detection & identification of chemicals in a complex mixture.

Fluidized bed reactor- A device for heterogeneous (multiphase) catalytic reactions in which the fluidized catalyst is allowing extensive mixing in all directions with excellent temperature stability and increased masstransfer and reaction rates.

Fatigue Test - Behaviour of materials under fluctuating axially, in torsion, or in flexure loads

Hardness testers - a material's resistance to indentation by measuring the permanent depth or projected area of the indentation.

Surface Texture Analyser - evaluate the cohesiveness, spreadibility, fracturability, tackiness, gumminess, firmness, pliability, consistency and other texture characteristics of foods, rubber, foams, coatings, grease, asphalt etc.

John Kennedy

Ion-Beam Analysis (General) Ion-Beam Analysis (Air Particulates) Ion-beam Analysis (Ultra-High Vacuum) Ion-Beam Analysis (Microprobe) Atomic Force Microscope (AFM) Scanning Electron Microscope (SEM) Field Emission system Hall Effect test system Four/Two probe system **Dawn Smith** FE-SEM FTIR Microscope, LaserConfocal/Floures Dynamic Mechanical Thermal Analysis (D/ Dielectric Thermal Analysis (DETA) Foaming and moulding equipment Differential Scanning Calorimetry (DSC) Thermogravimetric Analysis (TGA) Melt Flow Index (MFI) Micro-imaging Synchroton Karnika De Silva (may direct to Researd Ashing furnace Colour Spectrometer DMTA - Dynamic Mechanical Thermal An DSC - Differential Scanning Calorimeter FTIR - Infrared Spectrophotometer Microscope (with digital camera and hea Microtome Moisture Content Analysis (Sartorius MA? Starlet 2212 Cryostat Microtome Stereo Explorer (used with Leica Microsco TGA - Thermo Gravimetric Analyser Xenon Arc Xenon Arc - Fresh Water per hour Xenon Arc - Lamps per hour XRF (Contact Geology Dept) Colin Doyle (RCSMS and Chemical and XPS XRD (Single crystal, Powder) facilities Optical Microscope Facility ESEM/EDS - multiple facilities Kevin Daish (ASAS) ICPMS Raman Spectrometer FTIR ESP Light Scattering Laser diffraction particle analysis Carbon, nitrogen & sulfur analysis Size exclusion Chromatography (SEC-MA EPR LC-MS GC-MS Shimadzu

cent Microscopes	
(ATM	
h Centres)	
in Centres/	
alvser	
ited stage)	
nted stage)	
ated stage)	
nted stage) ??)	
ated stage) ??)	
ated stage) ??) ope)	
ated stage) ??) ope)	
ated stage) ??) ope)	
nted stage) ??) ope)	
ated stage) ??) ope)	
nted stage) ??) ope)	
ated stage) ??) ope)	
ated stage) ??) ope)	
nted stage) ??) ope) Materials Engineering)	
nted stage) ??) ope) Materials Engineering)	
ated stage) ??) ope) Materials Engineering)	
ated stage) ??) ope) Materials Engineering)	
nted stage) ??) ope) Materials Engineering)	
nted stage) ??) ope) Materials Engineering)	
nted stage) ??) ope) Materials Engineering)	
Materials Engineering)	
nted stage) <pre>??) ope) Materials Engineering)</pre>	
nted stage) ??) ope) Materials Engineering)	
ated stage) ??) ope) Materials Engineering)	
ated stage) <pre>??) ope) Materials Engineering)</pre>	
ated stage) ??) ope) Materials Engineering)	
nted stage) ??) ope) Materials Engineering)	
nted stage) ??) ope) Materials Engineering)	
nted stage) P?() Ope) Materials Engineering)	
uted stage) % ope) Materials Engineering) LLS)	
uted stage) % ope) Materials Engineering) LLS)	
uted stage) <pre> % ope) Materials Engineering) LLS) </pre>	
ited stage) (?) Materials Engineering) LLS)	

DID YOU KNOW

Paar Physica UDS 200 rotational rheometer - to measure shear viscosity, viscoelastic functions, creep, and yield stress of materials using different geometries such as cone-and-plate, parallel-plate, and concentric cylinder

Rheosense m-VROC viscosity meter - High Shear, Small Sample Viscometer - Coatings, Cosmeceuticals, Food & Beverages, Fracking, Conductive inks, Ceramic, Oils & Lubricants, Rechargeable Battery and Fuel Cells etc

Liquid chromatography-mass spectrometry (LC/MS) - technique with high sensitivity and specificity. Used to analyze compounds that are too large, too polar, or too thermally labile for the GC technique. Application is oriented towards the detection & identification of chemicals in a complex mixture.

Permeability and compaction characterisation - (air and liquid) - for fibrous reinforcements for use in liquid resin infusion simulations (based on image analysis or thickness)

NMR - quantitatively analyze mixtures containing known compounds. Can be used in quality control & research for determining the content & purity, molecular structure, match against spectral libraries, infer basic structure directly, molecular conformation, physical properties at molecular level-e.g. conformational exchange, phase changes, solubility & diffusion

GC/MS - combines the features of gas-liquid chromatography and mass spectrometry to identify different substances within a test sample.

Gel permeation chromatography (GPC) - a separation technique based on hydrodynamic volume (size in solution). Molecules are separated based on differences in molecular size and used in polymer molecular weight determination.

XRF -X-ray fluorescence- a non-destructive elemental analysis of materials in a broad range of industries & applications; from Positive Material Identification, scrap metal sorting, measuring sulfur in oil, analysing coating thickness of metal finishing & metal alloys to quality control in the electronics & consumer goods industry.

QQQ new triple quadropole QTOF-MS GCMS Agilent 7890 Mass Spectrometer GCMS Thermo Mass Spectrometer LCMS Q-Exactive Thermo Qstar Mass Spectrometer LTQ-FT Mass Spectrometer XRD - Single Crystal XRD- powder Rigaku XRD- powder Siemens NMR 300MHz, 400MHz, 500MHz, 600MHz Malvern Mastersizer Laser diffraction particle analysis Schmidt and Haensch multiple wavelength refractometer Wyatt DynaPro Titan Dynamic Light Scattering Rheosense m-VROC viscosity meter Rudolph DDM 2910 Digital Density Meter Dynamic Scanning Calorimeter (DSC) Microcal VP-ITC Thermo Gravimetric Analysis TGA ABI 3130 DNA Sequencer ABI 7500HT real time PCR Instrument Affymetrix GeneChip microarray Equipment Illumina MiSeg sequencer ABI Ion Torrent PGM sequencer Bio-Rad MyIQ Real Time PCR system Crystal Pro HT electron microscopes - FEI Tecnai TF20, FEI Tecnai 12, Phillips CM12 Optical diffractometer Gel imaging system -Fujifilm LAS-3000 Li-Cor Odyssey CLx infrared imaging system Perkin Elmer Envision Plate Reader Perkin Elmer Enspire plate reader Crystal Pro HT Crystal Pro HT XCube Wyatt DynaPro Titan DLS Polymer Standards Service SLD7000 Multi-Angle Laser Light Scattering detector + Dionex HPLC

Li-Cor Odyssey CLx infrared imaging system Laser micro dissection system -Leica LMD6000 BD FACS Calibur Flow Cytometer

Michelle Dickinson

Nano-mechanical Research Laboratory Hysitron TI-950 Tribolndenter MTS XP Nanoindenter Activelife Technologies Biodent 1000 John Duncan Analysis labs Scanning Electron Microscope Transmission Electron Microscope Optical miscroscopy Material preparation Materials processing and treatment Dynamic mechanical analyser

UNIVERSITY OF AUCKLAND

UNIVERSITY OF CANTERBURY

UNIVERSITY OF CANTERBURY

DID YOU KNOW

Electron spin resonance (ESR) spectroscopy is a technique for studying materials with unpaired electrons. The basic concepts of EPR& NMR are similar, but it is electron spins that are excited instead of spins of atomic nuclei. As most stable molecules have all their electrons paired, EPR is less widely used than NMR.

Electrochemical potentiodynamic reactivation (EPR)-a test created to evaluate susceptibility to inter-granular or non-uniform corrosion, an effective method of testing alloys & SS. EPR is non-destructive, can identify alloy & SS resistance to inter-granular corrosion, study precipitation & grain boundaries, and examine local changes to structure & composition of alloys

Colour Spectrometer- Color is a key indicator of the quality of a product, color consistency & accuracy in paints & coatings, freshness & quality in foos etc. Color measurement can extend past transmitted or reflected spectral data to include CIE L*a*b* Color, Yellowness, Haze & other appearance related attributes.

Leica Stereo Explorer -automatically creates 3D data records from two 2D stereo microscope images. From this data, extract profiles. Roughness or undulation can be determined with high precision, fractal dimension & volumetric calculations of depressions and elevation, volume of dents and peaks can be calculated.

ICPMS - Inductively coupled plasma mass spectrometry (ICP-MS) capable of detecting metals & non-metals at very low concentrations. Emerging rapidly growing application areas -: analysis of flue gas desulfurization wastewaters, seawater & characterization of engineered nanoparticles

Raman Spectrometer- a technique used to observe vibrational, rotational, and other low-frequency modes in a system used to characterize materials, measure temperature, crystallographic orientation etc. Water does not interfere with analysis. Thus, suitable for micros-analysis of minerals, materials, polymers & ceramics, cells, proteins & forensic trace evidence.

Laser diffraction particle analysis - a widely used particle sizing technique for materials ranging from hundreds of nanometers up to several millimeters in size.

Differential scanning calorimeter Thermogravametric analyser

John Duncan or Mike Flaws

DMTA - Dynamic Mechanical Thermal Analyser DSC - Differential Scanning Calorimeter FTIR - Infrared Spectrophotometer Microscope (with digital camera and heated stage) Microtome TGA - Thermo Gravimetric Analyser XRD (Contact Chemistry Dept) XRF (Contact Geology Dept) Electron Microscope Facility 1) SEM (Scanning Electron Microscopes): JEOL 7000F with EDS and Cathodoluminescence 2) JEOL 6100 with Oxford EDS and EBSD 3) Leica 1440 TEM (Transmission Electron Microscope): 1) Philips CM200 with EDS and 2) Philips CM120

Gatan PIPS, dimpler and 3mm ultrasonic specimen cutter Various coaters Craig Grant (Research Office) or Robert Van Hale Certification of sucrose adulteration in honey (AOAC 1999 protocol) C,N,H,S elemental analysis (Dumas combustion method) C,H,O,N,S Light stable isotope ratio measurement of most solids, liquids or gases Gas Chromatography with FID detector (GC-FID)

High pressure liquid chromatography with UV, fluorometric, E.L.S. or refractive index detectors (HPLC) http://neon.otago.ac.nz/consulting/isotrace/applications.php

Craig Grant (Research Office) or Rachel Laing

moisture content analysis/change, Clothing/Textiles: Moisture content analysis microscopes/camera access to SEM, cryo

Craig Grant (Research Office) or Dave Prior

Microchemical analysis using high- speed energy dispersive X-Ray microanalysis (EDX). Oxford instruments Xmax 20 detector mouned on a Zeiss Sigma fieled emission gun SEM (FEGSEM). Oxford instruments AZTEC & INCA operating software. Crystallographic mapping using electron backscattered diffraction (EBSD). Oxford instruments Nordlys F detector mouned on a Zeiss Sigma fieled emission gun scanning electron microscope (FEGSEM). Oxford instruments AZTEC operating software. Particle searching based on backscatter imaging coupled to energy dispersive X-Ray microanalysis (EDX). Uses oxford instruments "Feature" software within INCA platform Confocal Microscopy, MicroCT scanning Laser mass spectrometry

Magnetic properties and palaeomagnetism XRD

Raman

Craig Grant (Research Office) or Chris Button

Flume [Size accessible water channel: L10m x W2.5m x D2m, Flow rate (0-5 m/s, approx. 10 knots), Temp range (5-35 deg C). Automatically triggered cut-out function for engines, numerous options for video camera and load cell placement (e.g. 4 underwater viewing windows (\sim 1.5 x 1.5m), a portable steel gantry)-Separate cylindrical plunge tank (1.5m radius, 3 m depth) Centre for Trace Element Analysis, Chemistry Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) (Nu Plasma-HR, Nu Instruments Ltd, UK)

UNIVERSITY OF OTAGO

UNIVERSITY OF OTAGO

UNIVERSITY OF WAIKATO

DID YOU KNOW

(SEC-MALLS) - Size-Exclusion Chromatography Combined with Multiangle Laser Light Scattering -Fractionation of samples delivered to three detection systems: UV/Visible, Refractive Index (RI) & Light Scattering (LS). Directly determine molar mass, radius size & aggregation state, diffusion coefficients, hydrodynamic sizes & molecular weights, characterises biomolecules.

QQQ new triple quadropole mass spectrometer- is a tandem mass spectrometer consisting of two quadrupole mass spectrometers in series, with a (non mass-resolving) radio frequency (RF)-only quadrupole between them to act as a cell for collision-induced dissociation. The first (Q1) and third (Q3) quadrupoles serve as mass filters.

LTQ-FT Mass Spectrometer - combines the most advanced Ion Trap and Fourier Transform Ion Cyclotron Resonance technologies into a single instrument with unprecedented analytical power & versatility. For the first time, high resolution, accurate mass determinations, and MSn are available for routine high-throughput analysis.

Quadrupole Time-of-flight Mass Spectrometry (QTOF-MS)- provides the highest UPLC (Ultra performance Liquid Chromatography)/MS/MS performance of challenging qualitative & quantitative applications. Combines physical separation of liquid chromatography with mass spectrometry.

. Malvern Mastersizer - particle size analyser - automated sample dispersion units for the measurement of wet & dry samples (options for emulsions, suspensions & dry powders) controlled through SOPs, providing ease of method development and transfer.

Wyatt DynaPro Titan Dynamic Light Scattering (DLS)- Determine sizes of metallic nanoparticles or quantum dots, quantify self-assembly processes of polypeptides, estimate populations of aggregates large & small, analyze thermal stability, differentiating pure unfolding from aggregation, assess colloidal stability as a precursor to aggregation, precipitation etc

S & H multiple wavelength refractometer - digital, fully automatic spectral refractometer-Dispersion measurement at 7 wavelengths over the full visible range. Potential applications found inR/D where the exact knowledge of material properties in medical research (plastic &, contact lenses), communication technology (polymer materials, special optical liquids and glues).

Quadrupole Inductively Coupled Plasma Mass Spectrometer (Q-ICP-MS) (Agilent 7500 cs/ce, Agilent Technologies, U.S.A.) 193 nm Excimer Laser Ablation System (Resonetics Resolution system, Resonetics Ltd, U.S.A. with Lauren Technics Ltd, Australia laser ablation cell) 213 nm Laser Ablation System (New Wave Ltd, U.S.A.) Sector-Field Inductively Coupled Plasma Mass Spectrometer (SF-ICP-MS) (Nu Attom, Nu Instruments Ltd, UK, to be installed in late 2014) Otago Centre for Electron Microscopy (Dept Anatomy): Range of scanning (SEM) and transmission (TEM) electron microscopy capabilities and microCT (see: see http://ocem.otago.ac.nz/em_techniques.html) Shear force measurements of materials (School of Dentistry)

Inmmune siganlling (in vitro and in vvivo) Anti-bacterial, anti-fungal, anti-viral testing Anti-biofilm Flow cytometry Tissue culture facilities Bioplex for cytokine/chemokine detection Fluorescence microscopy PC3 facility for restricted pathogens

Brian Gabbitas (HOD)

Waikato Mass Spectrometry Facility

MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionisation – Time Of Flight Mass Spectrometer)

ESI MS (ElectroSpray Ionisation) with Bruker Daltonics micro TOF for high relostuion or with Fisons VG Platform quadrupole for lower resolution ICP MS (Inductively Coupled Plasma): GC MS (Gas Chromatography): HP 6890 GC with HP 5973 quadrupole SPR (Surface Plasmon Resonance): Biacore 3000 LC MS (Liquid Chromatography): Bruker amazon X (ESI or APCI FPLC (Fast Protein Liquid Chromatography): AKTA and LCC Electron Microscope Facility SEM (Scanning Electron Microscope) TEM (Transmission Electron Microscope): Philips CM30 Stable Isotope Research Facilities Isotope Abundance Analyser: Europa Scientific 20/20 Isotope Ratio Mass Spectrometer: Europa Scientific Penta 20/20 Waikato Radiocarbon Dating Laboratory Liquid Scintillation Spectrometer: Perkin Elmer 1220 Quantulus Accelerator Mass Spectrometer Others

X-Ray Diffractometer (XRD)

- Thermal Analysis (DSC, DTA/ TGA)
- UV Spectrophotometers
- Hoeffer Electrophoresis System

Performance testing of medical devices and textiles (UOW Centre for Translational Physiology)

MATERIALS PROCESSING EQUIPMENT

DID YOU KNOW

Microcal VP-ITC -isothermal titration calorimeter - investigate biomolecular interactions. Measures binding affinity & thermodynamics & the measurement of the heat change determines the binding constants (KD), interaction stoichiometry (n), enthalpy (ΔH) & entropy (ΔS), provides TD profile of molecular interaction in a single experiment.

Rudolph DDM 2910 Digital Density Meter -designed to meet the requirements of your laboratory applications in Chemical, Petroleum, Pharmaceutical, and Beverage industries

Resin infusion and RTM light facilities – Stereo-photogrammetry system for dynamic thickness measurements during flexible mould processes.

Brabender -Melt Rheology characteristics -of materials - to the combined influence of temperature & shear. Twin screw combination measures both heat & drive information which is continuously exchanged. The records of torque, time & temperature are displayed on plastogram graphical data software. Statistical data evaluates fusion behaviour, heat & shear stability, flow-curing behaviour of crosslinking, liquid absorption. Twin screw provides data of plastifying, compounding, alloying of polymers, chemical reactions, dispersion of pigments & additives etc

The Dumas combustion method enables quantification of the elements C,N,H,S in organical substances. C,H,O,N,S Light stable isotope ratio measurement of most solids, liquids or gases.

Multiple-Collector Inductively Coupled Plasma Mass Spectrometer enables the detection of minute variations in the isotopic makeup of metals, allowing questions as diverse as the migration history of commercially-sensitive fish stocks, the fate of metal contaminants in NZ's waterways and ecosystems, and the pace and amplitude climate change to be investigated..

Gas chromatography with FID can be used for the detection of organic molecules in gases.. E.g. HPLC measurements using UV, fluorometrics, E.L.S. or refractive index detectors allows identification of separate components in a chemical mixture, such as biological fluids.

Andy Hilton

· · · · · · · · · · · · · · · · · · ·
3 and 4 axis CNC Machining
High Precision EDM Wire Cutter (Makino
Laser Cutter (Universal X660)
Water Jet Cutter
Roll-former, Hydraulic Press
Welding workshop (friction stir, TIG/MIG
Conrad Lendrum
scale-up chemical reactor (up to 100kg c
wide range of instrument calibrations (vid
magnetic properties (Squid, magnetomet
lan Brown
Metal/ceramic processing - Ian Brown - f
Maraaret Leonard
Machinery
• Water tower and ring main
• Power ring main
Compressed Air ring main
• Blown Film Tower
· Blow Moulder
• Rotational Moulder
• Single screw Extruder • Twin Screw Extr
· Injection Moulder x 80 tonne
• Tumblar Mixer
• Die Tool Hegter
• Small Conveyor System
• Hopper Dryers x 1
• Ultrasonic Welder
Rotational Frictional Welder
• Thermoformer
• Extruder Dryer and Water Cooler
Master Batching Grabametric
· Granulators x 2
Miscellaneous small machinery
• Surface Modifier
Printing Press
• High speed CNC Machinery (this all sits
o Machine centre
o Spark eroder
John Kennedv
Fabrication Facilities
Metal Ion-Implanter
High Energy Ion-Implanter
Triple-beam lon-Implanter
Ion-beam Sputtering System
High vacuum Electron Beam Annealer
Old Arc-discharge Chamber
New Arc-discharge Chamber
Direct lon begin deposition chamber
Pipeline Coatina System
Multi-metal Evaporator system
Sputter cogter system

AUT

CALLAGHAN INNOVATION, GRACEFIELD

CALLAGHAN INNOVATION, PARNELL

GNS

12)
apacity);
MSL); er etc.)
or details
Jder
beside the fitting/turning-tool-making section

MASSEY UNIVERSITY

OTAGO POLYTECHNIC INNOVATION WORKSPACE

SCION

DID YOU KNOW

Quadrupole Inductively Coupled Plasma Mass Spectrometer enables the detection of metals and some non-metals to very low concentrations, for example, to 'fingerprint' New Zealand's commercially-sensitive export produce, and to understand how essential nutrients are utilized within the human body.

Visual change assessment covers the standard procedures for determining change in appearance of fabrics or garments.

The *flume is an aquatic treadmill*, with excellent laminar flow. This purpose-built circulating water channel has variable water speed (0 - 5.0 m/s; up to 10.0 knots). Although originally built for testing and training of swimmers & other aquatic sports, it can also be used for testing properties of water flow, boat hull design& other underwater equipment. For analysis and feedback, data is displayed live and relayed onto a large screen using portable cameras & load cells.

The thermal maturity and genetic character of natural gas can be determined by measuring the carbon and hydrogen isotope ratios of C1-C3 hydrocarbons (Mud gas isotope logging).

An Instron Bench can be used to evaluate the mechanical properties of materials and components including fibres, yarns, fabrics, using tension, compression, flexure, fatigue, impact, torsion and hardness tests..

The climate chamber can be used to determine the effects of apparel systems on human performance.

An impact rig is used to determine resistance to impact events..

193 nm Excimer Laser Ablation System enables the detection of metals in very small solid samples, for example, in unravelling the complex evolution of New Zealand, including its tectonic and climatic history, and the development of its economic minerals.

Johan Potaeiter

Ancillary manufacturing equipment
Complete Engineering workshop and infr
Laser cutters
CNC
Finishing equipment

Eva Gluyas Epilogue Laser Bed size 600x450mm Cuts thin plastics (6mm) and ply/mdf (4m High resolution etching (600dpi) Global laser Bed Size 1800x1200mm Cuts timber/mdf (8mm) and plastics (10m Omax water Jet Bed size 620X620mm Cuts most materials of reasonably consist eps) max thickness approx150mm. Record 120 router Bed size 2700x950mm (z=250mm), For **Dawn Smith** Twin Screw Extruder labtech Film Line (Extrusion) labtech Single Screw Extruder Larger scale (60mm) extruder with fitting Drier/feeders: extrusion accessories - va Cross head die extrusion Extrusions: cast Film and profile extrusion Driers/feeders: extrusion accessories -va Cross head die extrusion: cable coating Extrusions: cast film and profileextrusions Die Face (air cooled) Pelletiser Batch Pre-mixers, 5 and 20 litre Laboratory Thermoformer/lamination Boy 35t and 15t Injection Moulding Mar Weverk Press - fully automated Siempelkamp Press-fully automated Polymer foaming - various types and sc polyester etc.) Diaphragm/resin infusion/vacuum assiste Mechanical Fibre Processing Pilot Plant (Chemical pulping equipment - various Fibre mat making Continuous fibre impregnation line Fibre treatments Composite manufacturing - various Maxi-blender fibre coating and dispersi Paper-making, coating and paper testin Fibre-cement manufacturing equipment Choppers/Pelletisers Hammer mill Large sieving apparatus Freeze driers

astructure
m), paper card etc
nm)
ent thickness. (metals, plastics, stone, ceramic, alass, timber.
machining of fimber and plastics.
s
rious
S
rious
: long fibre reinforced plastics
chine
ales of equipment for various foams (urethane, phenolic
ed composite moulding apparatus
pulp and MDF manufacture plant)
on equipment
g equipment -various

SCION

UNIVERSITY OF AUCKLAND

UNIVERSITY OF CANTERBURY

DID YOU KNOW

Thermal and vapour resistance, and thermal conductance of materials including textiles provide information on properties relating to warmth, the transfer of moisture, or the transfer of heat (the latter typically in damp fabric). Such information enables manufacturers to optimise the desired material properties, or make informed choices for specific materials.

Dimensional changes may occur in fabric, typically with cleaning or heat exposure.

Abrasion resistance refers to the fabric properties under the influence of rubbing.

Air permeability of a fabric measures the passage of air through it. This may be relevant for outdoor clothing or sails..

Sucrose adulteration (adding sugars like fructose to honey) can be detected by stable isotope ratio mass spectrometry

Accelerated light aging uses aggravated conditions of (sun)light to speed up the normal aging processes of items to help determine the long term effects of expected levels of (light) stress in a shorter time.

Supercritical drying Spray driers/encapsulation and microen Emulsion (1L) and various aqueous/polym Polymerisation and polycondensation rea Bioreactors and microbial polymerisation Supercritical Fluids Reactor and Supercritical CO2 mediated processing of polymers of Film casting equipment Steam explosion apparatus Wood drying/processing/impregnation Coating and adhesive preparations Coatings and adhesive tests Chemical and polymer extractions Aqueous and solvent extractors Biomass processing/pre-treatments react High speed mixer Laboratory-scale thermoformer Large drying apparatus Karnika De Silva (may direct to Researc Brabender Plasticorder Extruder - Single screw Henschel Mixer Injection Moulder 50 ton Arburg Injection Moulder 50 ton Boy V-Cone dry blender **CNC** Milling Machine Kevin Daish (ASAS) Critical Point Drier Sputter Coater Freeze Fracture Live cell imaging confocal microscope -Ar Ultramicrotome -Leica EM UC6 Glass knife maker -LKB 7800 Tissue processor for wax embedding -Tiss Wax embedding station -Leica EG1150H Slide staining station -Tissue-Tek II Cryomicrotome -Leica CM1850 Wax microtome -Microm HM 330 Sliding microtome Vibratome Freeze dryer -Edwards EPD3 Critical point dryer -Polaron E3000 Sputter coater -Polaron E5000 Dimpling grinder -Fischione Model 200 Ultrasonic disc cutter -Fischione Model 17 Grinding Room Facility John Duncan Differential scanning calorimeter Biomass integrated gasification combined Reactor/distillation column with fieldbus co MegaSpeed CPL MS 50K high speed can Wood drying tunnel Agilent micro gas chromatograph for gas

Niro Spray drier

apsulation
verisation reactors (up to 201)
lensation reactors (up to zor)
ctors
5
tical Eluids(CO2) Extraction various
nd composites
or equipment
h Centres)
dor Revolution
ue-Tek VIP
ue-Tek VIP) cycle (BIGCC) system
ue-Tek VIP
ue-Tek VIP
ue-Tek VIP)) cycle (BIGCC) system ontrol system iera
ue-Tek VIP
ue-Tek VIP
ue-Tek VIP) cycle (BIGCC) system ontrol system iera analysis
ue-Tek VIP

mera
II mill (120 ml unit volume)
ling machine
5 NI)
- 5 [4]
5
r)
Soffware
nension SST768)
nension SST768) 1001
nension SST768) 100)
nension SST768) 100) D, 400W)
nension SST768) 100) 0, 400W)
nension SST768) 100) 0, 400W)
nension SST768) 100) D, 400W) Iue.
nension SST768) 100) 0, 400W) Iue.
nension SST768) 100) D, 400W) Iue. Jue.
nension SST768) 100) D, 400W) Iue. Jue. D3mm binder -Can print on surfaces in full RGB colour.
nension SST768) 100) D, 400W) Iue. J3mm binder -Can print on surfaces in full RGB colour.
nension SST768) 100) D, 400W) Iue. J3mm binder -Can print on surfaces in full RGB colour.
nension SST768) 100) D, 400W) lue. J3mm binder -Can print on surfaces in full RGB colour.
nension SST768) 100) D, 400W) lue. J3mm binder -Can print on surfaces in full RGB colour.
nension SST768) 100) D, 400W) lue. D3mm binder -Can print on surfaces in full RGB colour.
nension SST768) 100) D, 400W) lue. D3mm binder -Can print on surfaces in full RGB colour.
nension SST768) 100) 0, 400W) lue. 03mm binder -Can print on surfaces in full RGB colour. s Van Hale
nension SST768) 100) 0, 400W) Iue. 03mm binder -Can print on surfaces in full RGB colour. s Van Hale
nension SST768) 100) 0, 400W) lue. J3mm binder -Can print on surfaces in full RGB colour. s Van Hale thines
nension SST768) 100) 0, 400W) lue. 03mm binder -Can print on surfaces in full RGB colour. s Van Hale thines
hension SST768) 100) 0, 400W) lue. 03mm binder -Can print on surfaces in full RGB colour. s Van Hale thines
hension SST768) 100) 0, 400W) lue. 03mm binder -Can print on surfaces in full RGB colour. s Van Hale thines imaterial printer (Objet)
nension SST768) 100) D, 400W) Ilue. D3mm binder -Can print on surfaces in full RGB colour. s Van Hale thines imaterial printer (Objet) EDM = dual filament BEB Touch)
nension SST768) 100) D, 400W) lue. D3mm binder -Can print on surfaces in full RGB colour. s Van Hale chines imaterial printer (Objet) FDM – dual filament BFB Touch)
nension SST768) 100) D, 400W) lue. D3mm binder -Can print on surfaces in full RGB colour. s Van Hale thines imaterial printer (Objet) FDM – dual filament BFB Touch)
nension SST768) 100) 0, 400W) lue. 03mm binder -Can print on surfaces in full RGB colour. s Van Hale chines imaterial printer (Objet) FDM – dual filament BFB Touch)
hension SST768) 100) 0, 400W) lue. J3mm binder -Can print on surfaces in full RGB colour. s Van Hale thines imaterial printer (Objet) FDM – dual filament BFB Touch)
hension SST768) 100) 0, 400W) lue. J3mm binder -Can print on surfaces in full RGB colour. s Van Hale thines imaterial printer (Objet) FDM – dual filament BFB Touch)
hension SST768) 100) 0, 400W) lue. lue. 33mm binder -Can print on surfaces in full RGB colour. s Van Hale thines imaterial printer (Objet) FDM – dual filament BFB Touch)

PRODUCT, MATERIAL PERFORMANCE TESTING

		HOLMES SOLU
		ISO 17025 certified testing
	DID YOU KNOW	Materials testing (tensile, compression, bending
		Concrete testing
		Steel testing
		Reinforcing bar testing
	Wind load testing: Holmes Solutions can perform wind load testing on	Carbon fibre testing
	anything from sculptures to full scale buildings to verify compliance to New Zealand and International codes.	Timber testing
		Metallurgy testing
		Mechanical testing
		Building Product testing
	Destructive Testing: Holmes Solutions has a wealth of experience in conducting full scale destructive testing on a variety of products at any scale, from railway sleepers to full scale buildings.	Building sub-assembly testing
		Building component testing
		Bracina testina
		Wall panel testing
		Mechanical coupler testing
		Buckling restrained brace testing
		Viscous damper testing
		Seismic damper testing
	Dendeide Hunderman Testians Halance Caletions is the ender UC Federal	Full scale building testing
	Highways accredited crash test (roadside hardware) facility in the	Building failure investigation
	Southern Hemisphere. Conducting full scale, dynamic testing of a	Forensic Engineering
HOLMES SOLUTIONS	range of vehicles up to 12 tonne trucks travelling in excess of 100kph.	Hardness testing
		Farthquake loading simulation and testing
		Impact testing
		Fatigue testing
		Durability testing
	Seismic Testing: Holmes Solutions has a range of test apparatus	Abrasion testing
	purpose built for seismic testing. The largest testing apparatus has the	Fire testing
	capacity to test full scale braces up to 5MN in capacity, with a stroke	Fall protoction equipment
		Amusement rides and equipment
		Anosement rides and equipment
		Farthquake leading simulation and testing
	Product Refinement: Holmes Solutions can provide clients with key	Engineering Product festing
	insights into how they can refine their product improving product	Integrated system testing
	performance while reducing costs. This provides the client with a	Accident investigation and festing
	superior product write building intellectual property.	Dynamic impact festing
		Roadside hardware testing
		Security product festing
		Vehicle dynamics testing
	final stage in a development process, however requires early	Satety equipment testing
	consideration and planning to ensure the product can achieve the	Rail system testing
	desired outcomes. To assist this process, Holmes Solutions works with	Aerospace product and material testing
	clients to review New Zealand and International Standards, identify	Aerodynamic testing
	Regulatory requirements, assist with product compliance	Fall protection equipment testing
	documentation; and can liaise with regulatory bodies on behalf of	Environmental testing

Load measurement Wind turbine testing Composite structures

TIONS - TIM PORTER g, flexural) ale)

		Vibration testing
		NDT and Destructive testing
		Anti terrorist product testing
	DID YOU KNOW	Temperature monitoring and measureme
		Mechanical product testing
	Ereedom to Operate: Holmes Solutions works with a number of	Hydraulic test system
	clients identifying new opportunities and raising caution over	http://www.holmessolutions.com/
	potential infringment with patents already issued or pending patent	Finite Element Analysis (linear and non-lin
	applications, globally.	Failure mode and effects analysis
		Root Cause Analysis
HOLMES SOLUTIONS		Design for manufacture
	Retents: Holmos Solutions has first hand experience lisensing patents	Forensic failure investigation
	alohally. As such we share our knowledge and experience to ensure	Computation Fluid dynamics
	clients can secure their intellectual property, then leverage it in the	Magnetic modelling
	most appropraite manner to achieve their goals.	Dynamic impact modelling
		Material behaviour characteristics
		Reinforcing steel characteristics
		Structural dynamics
		Fire behaviour and modelling
		Structural mechanics
		Mechatronics
		Mechanical product and system modellin
		Fatigue modelling
		Virtual prototyping
		International standards compliance
		Freedom to operate
		Patents - Hydraulic system modelling
BUILDING ELEMENT ASSESSMENT LABORATORY LTD (BEAL) (Colin Prouse)		http://www.
BRANZ		http://www.branz.o
SGS		http://www.sgs.co.nz

t
ear)
eal.co.nz/why-use-beal.html
o.nz/cms_display.php?sn=63&st=1
en/Service-by-Type-Path/Testing.aspx