Aseismic Design of Shallow (rocking) Foundations

Michael Pender

November 28 2012

□ Structure and foundation form a single entity

Foundation behaviour is nonlinear

Elastic soil-structure interaction doesn't work

hence the terminology SFSI (soil-foundationstructure-interaction)

Elastic SSI diagram

Elastic SSI for a water tower

UACEER presentation November 28 2012

Priestley et al 2007: Displacement-based seismic design of structures

□ use of replacement structure

□ Paper by Trevor Kelly in Bull. NZSEE 2009

- many buildings not heavy enough to prevent rocking
- need better understanding of soil response

□ Paper by Priestley, Evison & Carr Bull. NZSEE 1978

- □ related NZS4203 (1976)
- □ based on Housner BSSA 1963 (a famous paper)

Nonlinear SFSI

Need a "design" method for modelling foundation moment-rotation curves

hands-on approach – quick check on software output or a peer-review tool

Shibata and Sozen - 1976

For a structural component – beam or column

Priestley replacement structure

UACEER presentation November 28 2012

Nonlinear foundation moment-rotation relation neglect horizontal deformation at foundation level linear structural behaviour

Nonlinear foundation response

Experimental data – Tom Algie's PhD thesis

Shallow foundation pull-back

Shallow foundation pull-back

Shallow foundation snap-back

Shallow foundation snap-back

Tom's Abaqus modelling

(Hence not dependent on spring bed modelling.)

Tom Algie's finite element work

Hyperbolic M-θ curve fit

Hyperbolic curve as a secant modulus

Secant modulus on a log rotation scale

What about damping?

Important for forced-based and displacement-based design

- □ hysteretic damping rather than radiation
 - not frequency dependent

Nonlinear finite element damping using PLAXIS 3D

Foundation moment (kNm)

Rotation (radians)

Shallow foundation example

Shallow foundation iteration

UACEER presentation November 28 2012

Pile foundation nonlinear

UACEER presentation November 28 2012

Conclusions

- An approach to incorporating nonlinear foundation moment-rotation curves into modelling the rocking of shallow foundations
- reduced foundation actions when compared with classical SSI
 - nonlinearity at the "middle" of the moment-rotation curve important
- □ based on field test data and 3D nonlinear finite element modelling with foundation loss of contact
 - not dependent on spring-bed modelling
- relatively simple hands-on calculation as a design aid or peer review tool.