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Introduction
We are interested in analyzing the performance of a symmetric tree struc-
tured loss network model supporting both multilink (multicast) connections
that connect a central node to its nearest neighbours and unilink (unicast)
connections that connect just two adjacent neighbours (see Figure 1).

Figure 1: Loss network in the form of a spherical Cayley tree

Calls arrive in the network as a Poisson process and will be rejected or
blocked if they cannot be served immediately due to insufficient capacities
in the required links. Network performance is assessed by the probabil-
ity that a call is blocked or lost (blocking probability). Such a network
is considered as fair if the blocking probability for a certain type of call
is uniform across the network space, however, phase transition effects can
lead to unfairness or poor performance of the system. The critical ques-
tions are: When do phase transitions occur? How might they be avoided?
Earlier work showed that phase transitions can occur in such networks with
a symmetric tree structure and, more recently, that those phase transitions
can be nonmonotone in the arrival rate of multilink connections at a node
[1, 2].

Analysis of Performance
We break the symmetry of the network by randomly allocating two
different link capacities, C1 and C2, across the network and analyzed the
case C1 = 1 and C2 = 2. There are N1 links with capacity C1 and N2 links
with capacity C2 for each node in the network. The finite network has a
truncated product form stationary distribution with an explicit expression.
Finding the normalizing constant of the stationary distribution can be in-
feasible as the network grows larger. However, due to the symmetry of the

tree topology, we are able to develop a recursion scheme to evaluate the
exact normalizing constant. Let Z

(j)
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sum of all feasible configurations that have i multicast calls in node with
radius m whose rooted link has capacity j. Then the normalizing constant
can be evaluated by the following recursions,
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where

Mi (j) :=

{
max (0, Ni − 1) if j = Ci

max (0, Ni) otherwise

There is a connection between the stationary distribution of the finite
network and the Markov random field on an infinite network. Moreover,
phase transitions in the infinite network correspond to multi-mode of the
stationary distribution for the finite network. Existence of multiple Gibbs
measures in the infinite network are equivalent to the existence of multiple
fixed points of the above recursion equations. We then are able to reduce
the problem to the analysis of phase transitions for Gibbs measures that
correspond to the product form Markov specifications with respect to the
network.

Results
For a pure multicasting model, the network is equivalent to a collection of
independent loss systems when N1 = 1 and a collection of one-dimensional
systems when N1 = 2 respectively, independent of N2. In both cases, phase
transitions do not occur. When N1 is greater than 2, the network is equiv-
alent to a collection of symmetric loss networks with C = 1, q = N1 − 1

in [2]. In that case, as shown by Ramanan et al. [2], phase transitions can
occur.

Figure 2 shows the bifurcation map of a pure multicasting model with
N1 = 3 and N2 = 1. It shows that when the multicast arrival rate is smaller
than some critical point, there is a globally stable multicast blocking prob-
ability. However, this unique fixed blocking probability will lose its global

stability at the critical point and a new stable two-period bifurcation ex-
ist.That is, phase transitions will occur at that critical point.
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Figure 2: Multicast blocking probability for a loss network with N1 = 3

and N2 = 1
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