Introduction

In the binary response model the probability, \(p_i \), of the success of an event, \(Y_i = 1 \), conditional on the covariate vector \(x_i \), is expressed as,

\[
y_i = \sum_{k=1}^n a_k \beta_k \quad i = 1, \ldots, n.
\]

The function \(g \) links the linear predictors to the probability and determines the shape of the quantal response. McCullagh and Nelder [3] represent four possible link functions for binary response model:

- **logit** : \(\log(\pi_i / (1 - \pi_i)) \)
- **probit** : \(\Phi^{-1}(\pi_i) \)
- **cauchit** : \(\text{cauchy}^{-1}(\pi_i) \)
- **cloglog** : \(\log(-\log(\pi_i)) \)

Koenker[2] implements two parametric families of link functions for binary response applications:

- **Gosset link** : the Student \(t \) link function to the corresponding link functions for the AIDS and AZT data sets.
- **Student link** (Pregibon[1]) : the Student \(t \) link function uses the distribution function of the Student \(t \) distribution.

The Student \(t \) link function is an alternative link function for the Poisson-ordinal link function (POLF), a negative binomial-ordinal link function (NBOLF), and a 2-parameter gamma (GOLF).

The derivations

The link function is defined by

\[
y = g(\theta) = \beta^T x.
\]

The Student \(t \) link function uses the distribution function of the Student \(t \) random variables as the choice of the inverse of the link function. Therefore, \(\eta = F_{\nu}^{-1}(\pi) \) and \(\theta = F_{\nu}(\eta) \), where \(\theta \in (0,1) \) is the vector of parameters to be estimated. The first two derivatives of \(\theta \) with respect to \(\eta \) are

\[
\frac{\partial \eta}{\partial \theta} = F_{\nu}^{-1}(\eta), \quad \frac{\partial^2 \eta}{\partial \eta^2} = 0.
\]

The Student \(t \) link function

\[
\text{stlink}(\theta, \text{arg1} = \text{list}(\text{df} = 1), \text{inverse} = \text{FALSE}, \text{deriv} = 0, \text{short} = \text{TRUE}, \text{tag} = \text{FALSE})
\]

The accuracy

- all.equal(stlink(p, probit(p)))
 [1] TRUE
- all.equal(stlink(p, cloglog(list(df=1)), cauchit(p))
 [1] TRUE
- all.equal(stlink(stlink(p), inverse = TRUE), p)
 [1] TRUE

Future work

The next step is to investigate and develop a wider class of parametric link functions for binary and ordinal responses.

Link functions for binary responses

The logit and probit are widely used in modeling for binary response data. However, they do not always provide the best fit available for a given data set. In the future frame work we will investigate and implement more flexible link functions such as

- **probit**
- **logit**
- **cloglog**

Link functions for ordinal responses

Ye[6] develops three new link functions for ordinal responses obtained from the Poisson or negative binomial distribution: a Poisson-ordinal link function (POLF), a negative binomial-ordinal link function (NBOLF), and a 2-parameter gamma (GOLF).

The coefficients, log-likelihood, AIC, and the deviance obtained from glm() and vglm() with stlink() comparing to the corresponding link functions:

- all.equal(coef(Gosset), coef(stlink))
 [1] TRUE

AIDS and AZT Data (Agresti[1])

The coefficients, log-likelihood, AIC, and the deviance obtained from glm() and vglm() with stlink() comparing to the corresponding link functions:

<table>
<thead>
<tr>
<th>Link function</th>
<th>Log-likelihood</th>
<th>AIC</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gosset(df = Inf)</td>
<td>-9.4383</td>
<td>24.8755</td>
<td>1.4003</td>
</tr>
<tr>
<td>probit()</td>
<td>-9.4383</td>
<td>24.8755</td>
<td>1.4003</td>
</tr>
<tr>
<td>stlink(df = Inf)</td>
<td>-9.4383</td>
<td>24.8755</td>
<td>1.4003</td>
</tr>
<tr>
<td>Gosset(df = 1)</td>
<td>-9.3339</td>
<td>24.6677</td>
<td>1.3914</td>
</tr>
<tr>
<td>cauchit()</td>
<td>-9.3339</td>
<td>24.6677</td>
<td>1.3914</td>
</tr>
</tbody>
</table>

References

