THE USER OPTIMAL POLICY FOR A SIMPLE MARKOV TRANSPORTATION NETWORK.

Created by Heti Afimeimounga

Supervisor: Dr. Ilze Ziedins Statistic Dept., University of Auckland. Advisor:-Dr. Wiremu Solomon Statistic Dept., University of Auckland.

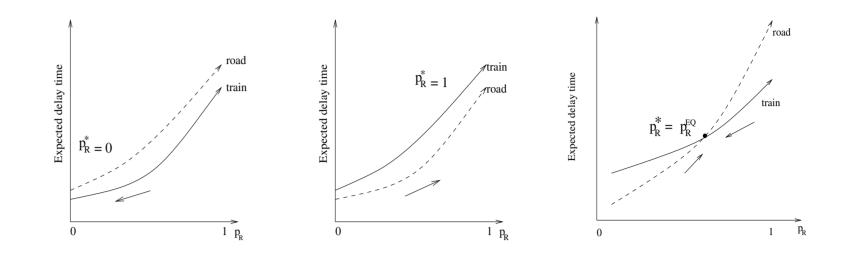
1 Introduction

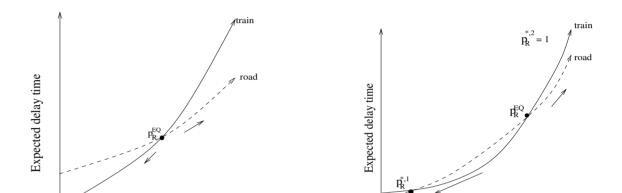
Delays in network where users individually choose the shortest route for themselves (user optimal policy) may be considerably greater than in the systems where a central controller directs users to the optimal routes. The reduction in performance is known as the cost of selfish routing.

The network model

- A much simplified network model of the choice that commuters face between a private (road, Q_R) and public (train, Q_T) transportation from a source to a destination is considered here (see Figure 1). Arriving general users have to choose between Q_R and Q_T so as to minimize their own expected delay.
- We consider when arriving general users made their choice given that they know the current state of the system (state-dependent routing) and when they do not know the current state of the system and made their choices probabilistically (probabilistic routing).

Comment: Multiple user equilibria may exist for this routing case (see Figure 4).





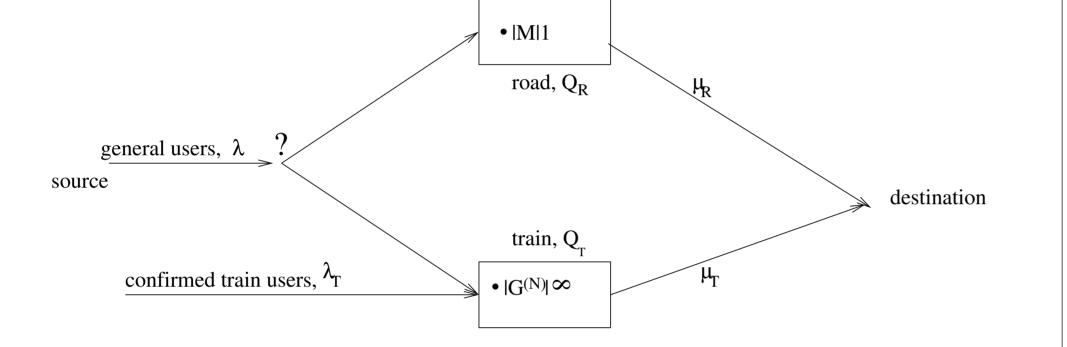


Figure 1: The network model

State-dependent routing

Let y(x) and $z_D(x)$ denote the expected transit time for an arriving general commuter who sees $x = (a, n) \in R$ and joins Q_R or sees $x \in T$ and joins Q_T . • The expected time in the system for a general user is given by

• The expected time in the system for a general user is given by

$$W = \sum_{\boldsymbol{x} \in \Omega} \pi_{\boldsymbol{x}} \Big(y(\boldsymbol{x}) I_{\boldsymbol{x} \in R} + z_D(\boldsymbol{x}) I_{\boldsymbol{x} \in T} \Big)$$

• Using sample path and coupling arguments in comparison of y(x) and $z_D(x)$ we show that

Theorem

- 1. Consider a process X, with parameters $\lambda, \lambda_T, \mu_R, \mu_T$ and $N \ge 2$. Then there exists a unique user optimal policy, $D^* \in \mathcal{D}$ for this system. Furthermore, D^* is monotone.
- 2. D^* is monotone in parameters if $\lambda_1 > \lambda_2$, $\lambda_{T_1} > \lambda_{T_2}$, $\mu_{T_1} > \mu_{T_2}$, $\mu_{R_1} < \mu_{R_2}$.

Figure 4: Multiple user equilibria.

2 Discussion

• W is not always decreasing as μ_R increases (Down-Thomson paradox) (see Figure 6) and it is observed under both state-dependent and probabilistic routing. State-dependent routing mitigates the effects of the Down-Thomson paradox observed under probabilistic routing, no sudden sharp increase and decrease when μ_R increases.

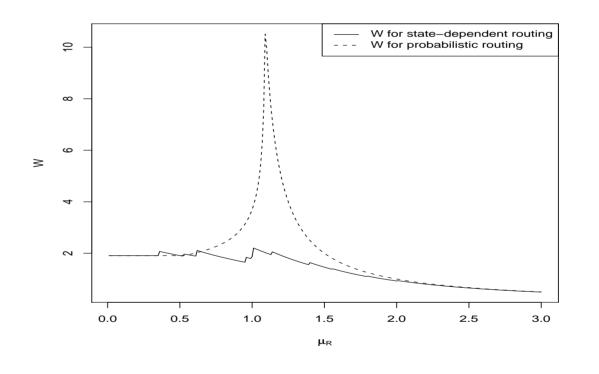


Figure 5: W vs. μ_R .

• If Q_T has one server, W_T is not monotone as in Q_T has infinite number of servers.

$$W_T vs. \Lambda$$

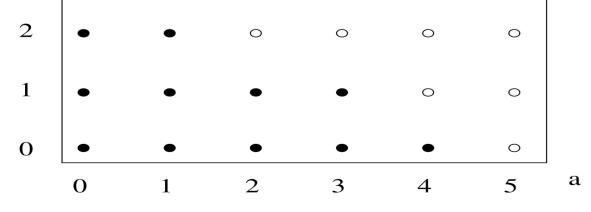


Figure 2: A monotone $D^* = (R, T)$ when N = 4. $x \in R$ are indicated by \bullet . $x \in T$ are indicated by \circ .

Comments: D^* is unique and monotone in all parameters, but W may not monotone in μ_R (see Figure 6) and λ .

Probabilistic Routing

• Arriving general user joins Q_R with probability p_R and Q_T with probability $1 - p_R$. p^{eq} is an user equilibrium if $W_T(p^{eq}) \leq W_R(p^{eq})$ or viceversa, $W_R = E(\text{delay time via } Q_R), W_T = E(\text{delay time via } Q_T)$. The expected transit time in the system for all general users is given by

 $W(p_R) = p_R W_R(p_R) + (1 - p_R) W_T(p_R)$

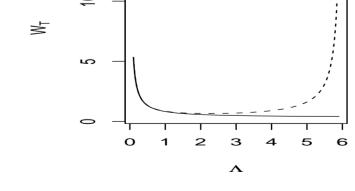


Figure 6: W vs. μ_R .

References

 [1] Afimeimounga, H., Solomon, W. and Ziedins, I. (2005) The Downs-Thomson Paradox: Existence, Uniqueness and Stability of User Equilibria. *Queueing System* 49, 321-334.

[2] Calvert, B. (1997) The Downs-Thomson effect in a Markov process. *Probability in the Engineering and Information Sciences* **11**, 327-340.

[3] Downs, A. (1962). The law of peak-hour expressway congestion. *Traffic Quarterly* **16**, 393-409.