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1 Introduction

Delays in network where users individually choose the shortest route for them-
selves (user optimal policy) may be considerably greater than in the systems
where a central controller directs users to the optimal routes. The reduction in
performance 1s known as the cost of selfish routing.

The network model

e A much simplified network model of the choice that commuters face be-
tween a private (road, () and public (train, ¢()7) transportation from a
source to a destination 1s considered here (see Figure 1). Arriving general
users have to choose between ()p and ()7 so as to minimize their own ex-
pected delay.

e We consider when arriving general users made their choice given that they
know the current state of the system (state-dependent routing) and when they
do not know the current state of the system and made their choices proba-
bilistically (probabilistic routing).
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Figure 1: The network model

State-dependent routing

Let y(x) and zp(x) denote the expected transit time for an arriving general
commuter who sees = (a,n) € R and joins () or sees & € T and joins ).

e The expected time 1n the system for a general user 1s given by
W = Z Tx (y<w)]:c€R T ZD(w)[wGT)
xel)

e Using sample path and coupling arguments in comparison of y(a) and zp(x)
we show that

Theorem

1. Consider a process X, with parameters A\, A\, iup, uT and N > 2. Then
there exists a unique user optimal policy, D* € D for this system. Further-
more, D* is monotone.

2. D* is monotone in parameters if \| > Xo, Ay, > A, p1, > U7y, MR, <
MRy

3 ° o o o o o
2 ) [ ) o o o o
1 ) [ ) [ ) [ ) o o
0) ° ° ° ° ° o
Q) 1 2 3 4 5 a

Figure 2: A monotone D* = (R,T) when N = 4. « € R are indicated by e.
x € 1’ are indicated by o.

Comments: D™ is unique and monotone in all parameters, but ¥ may not
monotone in pp (see Figure 6) and A.

Probabilistic Routing

e Arriving general user joins () p with probability pp and ()7 with probabil-
ity 1 — pp. p® is an user equilibrium if Wp(p?) < Wp(p) or vice-
versa, Wp = E(delay time via QQp), W = E(delay time via ()7). The ex-
pected transit time in the system for all general users is given by

W(pr) = prRWr(pr) + (1 — pr) Wr(pR)
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Comment: Multiple user equilibria may exist for this routing case (see Fig-
ure 4).
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Figure 4: Multiple user equilibria.

2 Discussion

e |1 1s not always decreasing as u p increases (Down-Thomson paradox) (see
Figure 6) and it 1s observed under both state-dependent and probabilistic
routing. State-dependent routing mitigates the effects of the Down-Thomson
paradox observed under probabilistic routing, no sudden sharp increase and
decrease when u p increases.
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Figure 5: W vs. up.

e If ()7 has one server, W is not monotone as in ()7 has infinite number of
SErvers.
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Figure 6: W vs. up.
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