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Introduction

Biased sampling can be found in most data collection processes and is quite common in

medical studies. It may arise by design for example, oversampling specific subgroups in

order to gain efficiency or inadvertently if someone refuses to respond.

The best-known example occurs in a simple case-control study. The disease status is

obtained from a random population, and potential covariates are observed for independent

samples taken from each group (case or control).

Note that the sampling is stratified on the response variable. The likelihood depends on

g(x), the distribution of the covariate x, which is of no interest and usually too complicated

for modelling. On the other hand, if the sampling were performed unconditionally or

conditionally on x, the likelihood would be given by

L(θ) =

N
∏

i=1

f (y|x; θ)g(x) ⇒
∂

∂θ
log L(θ) =

N
∑

i=1

∂

∂θ
log f (y|x; θ) (1)

where, f (y|x; θ) is the regression model. Note that it is independent of g(x) and so maxi-

mization is straightforward.

Anderson [1] and Prentice and Pike [4] have shown that for the binary logistic regression

model with an intercept, maximum likelihood estimates from all regression coefficients

except for the constant term can be obtained by ignoring the case-control scheme; i.e, the

case-control problem can be treated as a prospective one.

Scott and Wild [6] have shown how to adjust the intercept. They have also extended that

result for a broader class of models called “multiplicative intercept models” [7]. However,

since this property does not hold for arbitrary categorical regression models, methods that

can provide efficient estimation without modelling g(x) are of interest.

Missing data

A more general class of problems where biased samples can be found is related to missing

data.

Sampling scheme

Let y be the response variable and x a covariate vector. Suppose that complete information

is available on y for all units and x is observed for a sample of N individuals generated from

f (y|x; θ)g(x). Let Ri be an indicator variable denoting a complete (Ri = 1) or incomplete

(Ri = 0) observation, for i = 1, . . . , N , and π(yi, xi) = P(Ri = 1|yi, xi). The likelihood is

given by
N
∏

i=1

[π(yi, xi)f (y|x; θ)g(x)]Ri [(1 − π(yi, xi))f (y)]1−Ri , (2)

where

f (y) =

∫

f (y|x; θ)dG(x).

Suppose now that y is partitioned into K strata and ni units are selected from each stratum

for full observation. Note that the set {i : Ri = 1} corresponds to those units sampled on

the second phase. The likelihood can be written as

I
∏

i=1







ni
∏

j=1

f (yij|xij; θ)g(xij)







f (yi)
Ni−ni (3)

which is the likelihood used by Lawless et.at [2] for response-selective problems.

Methods

The most basic approach is to ignore the sampling scheme and consider only the complete

observed units. In general, this will not lead to an efficient analysis of the data. With the

purpose of improving it, several methods have been proposed.

Weighted likelihood

The weighted approach considers only the observed data, ignoring the incomplete ones.

Here, each unit is weighted by the inverse of its probability of being selected for full obser-

vation. The likelihood is

L(θ) =

I
∏

i=1

ni
∏

j=1

wi log f (yi|xij; θ), where w−1
i = P(R = 1|yi, xi) = π(yi, xi) (4)

It is known to be robust, but inefficient.

Conditional likelihood

Conditional likelihood is an alternative approach used to increase efficiency. Lawless et. al.

[2] have shown that this approach is more efficient than the weighted method for different

situations. The likelihood is given by

L(θ, G) =
∏

i:Ri=1

P(yi, xi|Ri = 1) =
∏

i:Ri=1

P(Ri = 1|yi, xi)f (yi|xiθ)g(xi)

P(Ri = 1)
(5)

It leads to a dependency on G, because

P(Ri = 1) =

∫

P(Ri = 1|y, x)f (y|x)g(x)dxdy

In order to avoid this dependence we can condition the likelihood on x as well

L(θ) =
∏

i:Ri=1

P(yi|xi, Ri = 1) =
∏

i:Ri=1

π(yi, xi)f (yi|xi)
∫

π(y, xi)f (y|xi)dy
(6)

and maximization is now straightforward. Note that both methods depend on π. Lee et.

al. [3] have shown that by estimating that probability, there will be a gain in efficiency

even if π is known.

Maximum likelihood method

The most efficient methods can be found here. They use complete likelihood to make

inferences on y, achieving full efficiency in special cases. The most basic methods are the

estimated likelihood and the EM algorithm.

•EM algorithm : Reilly and Pepe [5] applied the EM algorithm to maximize the likeli-

hood (2). Although it uses the complete data set, the mean score, as it is called, can be

shown to be related to the weighted method.

•Estimated likelihood : Since G(x) = P (X ≤ x) =
∑K

i=1 P(y = i)P(X ≤ x|y = i).

we can maximize (2) by replacing G(x) with G̃(x), where

G̃(x) =

I
∑

i=1

Ni

N
Ĝi(x), where Ĝi(x) is the ECDF. (7)

Weaver and Zhou have also used Ĝi(x), but for continuous y with no stratum

information for the missing data.

Fully efficient estimators can be obtained by profiling the full likelihood LF , i.e, LFP (θ) =

supG LF (θ, G). Maximization should be made over all possible values of θ and distributions

of G. However, Zhang and Rockette [9] suggested working with a simpler maximization

that is asymptotically equivalent. Instead of using the global MLE, full likelihood can be

maximized under the restriction that G is supported by the observed values of x.

Fully efficient methods have been developed for the following special cases

• The multivariate case-control problem for discrete y and x: an algorithm for obtaining

the MLE was developed by Scott and Wild [7]. algorithm for obtaining the MLE for the

multivariate case-control problem for discrete y and x.

• Song et.al. [8] obtained fully efficient estimator with a continuous response, but discrete

covariates.

• Zhao et.al. [10] worked with three distinct problems: x MAR, y MAR and both variables

MAR, when both variables are discrete.

Objectives and Perspectives

We are interested in the following objectives:

• Unify the work that has been done on conditional likelihood;

• To develop asymptotic expressions for the efficiency of weighted, conditional and full

likelihood methods;

• Describe situations where the conditional approach is substantially better than weighting,

when both methods achieve full efficiency and when the loss is neglible.
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