

Safe Method of Use 4 Storage of Chemicals in the Laboratory

General Guidelines

- The Safe Method of Use for particular classes of chemicals and MSDS for specific chemicals must be consulted for specific requirements for storage, use and disposal.
- The requirements of the Safe Method of Use for particular classes of chemicals *must* be followed.
- Quantities of hazardous substances in the laboratory **should** be kept to a minimum, commensurate with needs and shelf life. Substances unstable at room temperature **shall** be stored in controlled temperature storage. Incompatible chemicals **shall** be segregated.
- The quantity of hazardous substances stored on bench tops or shelves **should** be kept to a minimum.
- Storage cabinets *should* be used where practical.
- Flammable, reactive, highly toxic or corrosive substances not in regular use *shall* be stored in storage cabinets.
- Bottles and jars of ready-to-use reagents stored on benches or on shelves between benches *should* not exceed:
 - (a) 1 litre capacity for Category A Hazardous Substances
 - (b) 2.5 litres capacity for all other hazardous substance categories
- Liquids that are flammable, corrosive or toxic *should* be provided with secondary containment.
- Secondary containment *may* be provided by:
 - (i) Sumps within Flammable or Corrosive liquids cabinets
 - (ii) Plastic trays underneath corrosive substances
 - (iii) Metal trays for organic solvents

Segregation

- The purpose of segregation is to prevent inadvertent mixing of incompatible substances that would lead to a dangerous reaction.
- Segregation can be achieved by the use of distance or secondary containment.

- The distance required for segregation will depend on the quantity of the incompatible substances and their mobility. Containers of less than 100 ml or 100 g require very small distances to achieve segregation.
- Segregation can also be achieved through the use of secondary containment which allows even smaller segregation distances.
- The Safe Method of Use for particular classes of chemicals and MSDS for specific chemicals must be consulted for specific requirements for storage, use and disposal.
- For guidance and rules regarding segregation of classes of chemicals see Appendix 1.

Reactive Chemicals

- Care must be taken to ensure correct storage of many reactive chemicals. Some of these are listed in Appendix 2.
- Classes of potentially explosive chemicals are listed in Appendix 3. particular care must be taken with trinitroaromatics such as picric acid to ensure they have adequate desensitizing agent at all times- see Safe Method of Use for Hazardous Substances of Higher Risk 2 Picric acid.
- If ethers or dienes are being used see Safe Method of Use for Hazardous Substances of Higher Risk 4 – Storage and Testing for Peroxide Forming Chemicals.

Storage cabinets and refrigerators

- Storage cabinets *should* have secondary containment if they are used to store liquids.
- No more than 100 litres *should* be stored in any one cabinet and secondary containment *shall* be able to retain at least 50% of contents of the cabinet.
- Storage cabinets containing incompatible substances *shall* be separated by at least 1.0m horizontally. Cabinets with secondary containment in each cabinet *shall* be separated by not less than 0.5m.
- Refrigerators used to store open containers of Class 3.1A and Class 3.1B flammable substances, with a flash point less than 15 ⁰C, *shall* be spark proofed. (ie thermostats have been externally mounted and light fittings removed). The refrigerator *shall* be labelled as suitable for use with these substances.

Storage of Waste

Containers for collecting and storing hazardous substances wastes in laboratories:

- (a) **Shall** not exceed 5 litres for category A substances or 20 litres for all other categories.
- (b) **Shall** not be placed on the floor under or between benches, in walkways or corridors unless containers are attached to analytical equipment.
- (c) **Shall** be kept in a storage cabinet, unless:
 - the room where flammable liquids are being collected is ventilated to ensure that flammable vapour will not exceed 10% of the LEL, or
 - safety containers are used that are self closing and have a flash arrester.
- (d) Containers not stored in storage cabinets *should* be provided with secondary containment.

Inspection of Containers

Laboratory Managers *shall* ensure an annual review and inspection of all containers (and closures) used for long-term storage of hazardous substances to ensure adequate containment. Any leaking containers or closures *will* be disposed of immediately.

Appendix 1: Segregation of Chemicals

General Rules

COMPOUND	INCOMPATIBLE WITH
Class 3 Flammable Liquids	Class 4 Reactives; Class 5.1
	Oxidisers and 5.2 organic peroxides
	Sources of ignition
Class 4.1 reactives	With no other class; Sources of
	ignition
Class 4.2	Class 3 Flammable Liquids; Class 5.1
	Oxidisers and 5.2 organic peroxides
Class 4.3	Class 3 Flammable Liquids; Class 5.1
	Oxidisers and 5.2 organic peroxides
	water
Class 5.1	Class 3 Flammable Liquids; Class 4
	reactives
	Any Organic combustible
Class 5.2	With no other class; Sources of
	ignition and heat

Class 6

Cyanides will be kept away from acids

Class 8 – Corrosives

Stored to prevent reactions between: Acids and alkalis Acids and hypochlorites Acids and cyanides Acids and Class 4.3 compounds Oxidising acids (e.g. conc nitric and perchloric) and combustibles

NB: The distance required for segregation will depend on the quantity of the incompatible substances and their mobility.

Partial List of Incompatible Chemicals (Toxic Hazards)

Substances in the left hand column should be stored and handled so that they cannot possibly accidentally contact corresponding substances in the center column, because toxic materials (right hand column) would be produced.

COMPOUND	INCOMPATIBLE WITH	COMPOUND PRODUCED
Arsenates	Reducing agent	Arsine
Azides	Acids	Hydrogen Azide
Cyanides	Acids	Hydrogen Cyanide
Hypochlorites	Acids	Chlorine or
		Hypochlorous Acid
Formaldehyde	HCI or hypochlorite solutions	bis-chloromethyl ether
Nitrates	Sulfuric Acid	Nitrogen Dioxide
Nitric acid	Copper, Brass,	Nitrogen Dioxide
	Heavy Metals	
Nitrites	Acids	Nitrous Fumes
Phosphorus	Caustic Alkalies/	Phosphine
	Reducers	
Selenides	Reducers	Hydrogen Selenide
Sulfides	Acids	Hydrogen Sulfide
Tellurides	Reducers	Hydrogen Telluride

Incompatible Chemicals

The following is a partial listing of incompatible chemicals.

CHEMICAL	IS INCOMPATIBLE WITH
ACETIC ACID	Chromic acid, nitric acid, hydroxyl-containing compounds,
	ethylene glycol, perchloric acid, peroxides, and permanganates
ACETONE	Concentrated sulfuric and nitric acid mixtures or chloroform and
	bases
ACETYLENE	Copper tubing, halides, silver, mercury and their compounds
ALKALI METALS	Aluminum, calcium, lithium, magnesium, potassium and sodium
	with water or chlorinated hydrocarbon, carbon dioxide, halogens
AMMONIA,	Mercury, halogens, calcium hypochlorite, hydrogen fluoride
ANHYDROUS	
ANILINE	Nitric acid and hydrogen peroxide
AZIDES	Acids
BROMINE	Ammonia, acetylene, butadiene, butane, hydrogen, sodium carbide, turpentine
CHLORATES	Ammonium salts, acids, metal powders, sulfur, finely divided organic and combustible materials
CHROMIC ACID	Acetic acid, alcohol, camphor, flammable liquids, glycerol, naphthalene

CHEMICAL	IS INCOMPATIBLE WITH
CHLORINE	Ammonia, acetylene, butadiene, benzene and other petroleum fractions, hydrogen, sodium carbides, powdered metals
COPPER SALTS	Acetylene, hydrogen peroxide
CYANIDES	Acids
ETHYLENEDIAMINE	Greater than 3 percent with methylene chloride (explosive)
FLAMMABLE LIQUIDS	Ammonium nitrate, chromic acid, hydrogen peroxide, halogens, nitric acid, sodium peroxide
HYDROCARBONS	(Butane, Halogens, chromic acid, peroxides Propane, Benzene)
HYDROGEN PEROXIDE	Copper, chromium, iron, most metals and their salts, flammable fluids, aniline, and nitromethane
HYDROGEN SULFIDE	Nitric acid and oxidizing gases
IODINE	Acetylene, ammonia
MERCURY	Acetylene, hydrogen
METHYLENE CHLORIDE	Greater than 3 percent ethylenediamine (explosive)
NITRIC ACID	Acetic, chromic and hydrochloric acids, aniline, carbon, hydrogen sulfide, flammable fluids, or gases which are readily nitrated
OXYGEN	Oils, grease, hydrogen, flammable liquids, solids, and gases
OXALIC ACID	Mercury, silver
PERCHLORIC ACID	Acetic anhydride, alcohol, organic materials, e.g., wood, paper, grease, and oils
PHOSPHORUS	Air, alkalis, oxygen, reducing agents
PHOSPHORUS PENTOXIDE	Water
SODIUM	Carbon dioxide, carbon tetrachloride, water
SODIUM PEROXIDE	Any oxidizable substances; acetic acid, acetic anhydride, benzaldehyde, carbon disulfide, glycerol, ethylene glycol, ethyl acetate, methanol
SULFURIC ACID	Potassium chlorate, potassium perchlorate, potassium permanganate

Appendix 2: Reactive Chemicals

Reactive chemicals are substances which, under certain ambient or induced conditions, enter into violent reactions with spontaneous generation of large quantities of heat, light, gases (flammable and non-flammable), or toxicants that can be destructive to lives and property. Types of reactive chemicals have been loosely categorized:

Explosives

In general, protect explosive substances from shock, elevated temperatures, rapid temperature changes, and other reactive chemicals, Some examples: nitroglycerin, nitrocellulose, and organic peroxides. Many substances, when mixed, are potentially explosive (such as hydrazines and nitric acid).

Oxidizing and Reducing Substances

In many oxidizing and reducing reactions, both agents must be present. In some cases, one or the other substance may create a hazard by coming into contact with a normally innocuous substance. These reactions tend to generate heat and are often explosive, e.g., glycerol and potassium permanganate blended at room temperature for a few minutes react violently producing fire.

The following examples of typical oxidizers may:

Increase Rate of Combustion

Aluminum nitrate Ammonium persulfate Barium chlorate Barium peroxide Calcium chlorate Calcium nitrate Calcium peroxide Cupric nitrate Hydrogen peroxide Lead nitrate Lithium hypochlorite Lithium peroxide Magnesium nitrate Magnesium perchlorate Magnesium peroxide Nickel nitrate Nitric acid 70% or less

Perchloric acid 60% or less

Potassium chlorate Potassium dichromate Potassium nitrate Potassium persulfate Silver nitrate Silver nitrite Sodium perborate Sodium perchlorate Sodium persulfate Strontium chlorate Strontium nitrate Strontium nitrite Thorium nitrite Uranium nitrate Zinc chlorate Zinc peroxide

Cause Spontaneous Ignition with Reactant

Calcium hypochlorite Chromic acid Hydrogen peroxide (27.5-52%) Sodium chlorite (>40%)

Sodium peroxide Sodium permanganate Nitric acid Potassium bromate Potassium permanganate Trichloroisocyanuric acid Sodium dichloroisocyanurate

Decompose with Catalyst or Heat

Ammonium dichromate	Perchloric acid (60-72.5%)
Hydrogen peroxide (52-91%)	Potassium dichloroisocyanurate
Calcium hypochlorite (>50%)	Sodium dichloroisocyanurate

Cause Explosive Reaction when exposed to Catalyst or Heat

Ammonium perchlorate	Perchloric acid
1	Potassium superoxide

Water Sensitive Substances

These chemicals react with water, steam, and moisture in the air to evolve heat and/or flammable or explosive gases. Isolate water-sensitive substances from other reactive compounds, and store in a cool, waterproof area.

Some substances that liberate flammable gases when exposed to water are: hydrides, nitrites, carbides, and anhydrous metallic salts.

In some cases, water sensitive substances react extremely violently with water and are stored under oil or in inert atmospheres to prevent such reactions eg: pure alkali metals.

Air Reactive Substances

These materials are capable of rapid release of energy by themselves, as by self-reaction or polymerization, for example white phosphorous. Also included in this category are substances that can be easily ignited by common sources of heat when mixed with air, for example: alkali metals, ammonium nitrate, ammonium perchlorate, ammonium permanganate, benzoyl peroxide, boron hydrides, lithium hydride.

Acid Reactive Substances

These chemicals react with acid to evolve heat, flammable and/or explosive gases, and toxicants. Some examples are: alkali metals, hydroxides, carbides, nitrites, arsenic and related elements, cyanides, sulfides, and structural alloys (most metals).

Special Organic Compounds

These compounds are unstable and may decompose spontaneously or through contact with the immediate environment (air, water, and other reactants). Some examples: butyl lithium, diazonium compounds, diazomethane, chlorination intermediates, butadiene, nitration intermediates, organic sulfates, polymerization reactions, and highly nitrated compounds.

Pyrophoric Agents

Pyrophoric agents burn when exposed to air. In general, they require absolute protection against air. Examples: phosphorus and activated zinc.

Appendix 3 – Explosive and Potentially Explosive Chemicals

Explosive chemicals can release tremendous amounts of destructive energy rapidly. If not handled properly, these chemicals can pose a serious threat to the health and safety of laboratory personnel, emergency responders, building occupants, chemical waste handlers, and disposal companies. For example, an explosion of old isopropyl ether killed a laboratory worker when he attempted to remove a glass stopper from the container. In another instance, tetrazole exploded inside a hazardous waste incinerator, causing major damage and costly repairs.

Potentially explosive chemicals (PECs), which include peroxidizable organic chemicals. Most chemicals that are used in research and teaching laboratories

are stable and non-explosive at the time of purchase. Over time, some chemicals can oxidize, become contaminated, dry out, or otherwise destabilize to become PECs (e.g., isopropyl ether, sodium amide, and picric acid). See Appendix I—Explosive and Potentially Explosive Families— for examples.

Unlike known explosives, which are designed to be stable under normal conditions, PECs are particularly dangerous because they may explode if they are subjected to heat, light, friction, or mechanical shock.

Common Laboratory PECs

There are many PECs used in academic research laboratories.

The following are some commonly used chemicals that can become an explosion hazard under certain conditions:

• Organic chemicals that form peroxides through exposure to air or light (see Appendix II — Peroxide Forming Chemicals)

• Hydrated picric acid that becomes dry or becomes contaminated with metals that form metal picrate salts

• Sodium amide that reacts with air or moisture to form superoxides, as evidenced by yellow or brown discoloration

• Certain alkyl nitrates (e.g., butyl nitrate or propyl nitrate) that become contaminated with nitrogen oxides

• Certain normally stable perchlorates (e.g., pyridium perchlorate or tetraethylammonium perchlorate) that become unstable at elevated temperatures

Note: Most explosions occur while purifying or distilling mixtures. Therefore, use extreme caution before concentrating or purifying any mixture that may contain an explosive chemical (e.g., a peroxide forming chemical or perchlorate).

There is an additional group of chemicals that should be considered although they are not necessarily heat-, light-, friction-, or shock-sensitive. These chemicals give off gaseous degradation by-products that may cause overpressurization of the container and explode. They can degrade over time and should be incorporated into a safety and handling system that will prevent them from becoming explosive hazards.

Acetylene or acetylide compounds:	Diazo compounds
N-Chloro-3-aminopropyne	2-Buten-1-yl diazoacetate
Propiolic acid	Diethyl diazomalonate
Propynethiol	Dinitrodiazomethane
Organic Azides	Diazonium carboxylates, perchlorates, salts,
Diazidomethyleneazine	sulfates.
Picryl azide	
	tetrahaloborates, and, triiodides
Vinyl azide	Benzenediazonium-2-carboxylate
Acetyl azide	4-Aminobenzenediazonium perchlorate
Cyanodiazoacetyl azide	6-chloro-2,4-dinitrobenzenediazonium sulfate
Phenylphosphonic azide chloride	2-Nitrobenzenediazonium tetrachloroborate
	4-Toluenediazonium triiodide
Acyl hypohalites	Difluoroaminoalkanols
Acetyl hypobromite	1,1-Difluorourea
Hexafluoroglutaryl dihypochlorite	Perfluoro-N-cyanodiaminomethane
Alkyl nitrates	Fluoro—nitro compounds
Ethylidene dinitrate	1-Fluoro-1,1-dinitrobutane
Glyceryl trinitrate	Fluorodinitromethyl azide
Propyl nitrate	
Alkyl perchlorates	Fulminating metals
Hexyl perchlorate	Lead fulminate
	Gold fulminate
Ethyl perchlorate	
1-Chloro-2-propyl perchlorate	Silver fulminate
Allyl trifluoromethanesulfonates	Furazan N-oxides
2-Chloro-2-propenyl trifluoromethanesulfonate	
2-Chioro-2-propenyi tiniuoromethanesunonate	Dicyanofurazan N-oxide
	4-Oximino4,5,6,7-tetrahydrobenzofurazn N-oxide
Amminemetal oxosalts	Hudrovoovodinorovoobromato salta
	Hydroxooxodiperoxochromate salts
Ammonium hexanitrocobaltate	1-Ammonium hydroxooxodiperoxochromate
Bis(1,2-diaminoethane) diaquacobalt (III)	Potassium hyroxooxodiperoxochromate
perchlorate	
Trihydrazine nickel (II) nitrate	
	leding Occurrents
Aromatic nitrates	Iodine Compounds
Picric acid	Calcium 2-iodylbenzoate
Trinitrobenzene	lodobenzene
Picryl sulfonic acid	2-lodylvinyl chloride
Trinitroresorcinol	
Azides	Isoxazoles
Hydrogen azide	3-Aminoisoxazole
	3,5-Dimethylisoxazole
	-
Aziridines	Metal Azide Halides
1-Bromoaziridine	Chromyl azide chloride
	Molybdenum diazide tetrachloride
	Tungsten azide pentachloride
Azocarbaboranes	Metal Azides
	Aluminum azide
1,1-'Azo-1,2-dicarbadecaborane	Aluminum azide Bis(cyclopentadienyl)tungsten diazide oxide

Explosive and Potentially Explosive Chemical Families

Γ	
	Mercury (I&II) azide Lead azide
N-Azolium nitroimidates	N-Metal Derivatives
Benzimidazolium 1-nitroimidate	Cadmium nitride
4-Nitroamino-1,2,4-triazole	Dibutylthallium isocyanate
2-(N-Nitroamino)pyridine N-oxide	Sodium amide
Perchloramide Salts	Metal Fulminates
Barium perchloramide	Mercury (II) fulminate
Mercury (II) N-perchloryl benzylamide	Sodium fulminate
Silver perchlorylamide	Tripropyllead fulminate
Metal Halogentates	Perchloryl Compounds
Lead bromate	2,6-Dinitro-4-perchlorylphenol
	Perchloryl fluoride
	N-Perchloryl piperidine
Metal Hydrides	Peroxyacid salts
Stibine (Antimony hydride)	Calcium peroxodisulfate
	Potassium tetraperoxomolybdate
	Tetramethylammonium pentaperoxodichromate
Metal Nitrophenoxides	Peroxyacids
Lithium 4-nitrothiophenoxide	Benzenperoxyselennic acid
Potassium 4-nitrophenoxide	Peroxyacetic acid
	Peroxyformic acid
Metal Oxides	Peroxycarbonate esters
Bis (1-chloroethylthallium chloride) oxide	O-O-tert-Butyl isopropyl monoperoxycarbonate
Magnesium chloride trioxide	Diallyl peroxydicarbonate
	Dimethyl peroxydicarbonate
Matal Quality and a second as	Dhaambama aafara
<i>Metal Oxohalogenates</i> Ammonium iodate	Phosphorus esters
	Diethyl phosphite
Lead acetate-lead bromate	Dibenzyl phosphorchloridate
Metal Oxometallates	Nitroso Compounds
Bis (benzene) chromium dichromate	Dinitrosylnickel
	Ethyl N-methyl-N-nitrosocarbamate
	Potassium nitrosodisulfate
Metal Perchlorates	N–S Compounds
Chromyl perchlorate	Disulfur dinitride
	Potassium sulfurdiimidate
	Tetrasulfur tetranitride
	Thiotrithiazyl nitrate
Metal Peroxides	Organolithium Reagents
Many transition metal peroxides are dangerously	o-Trifluoromethyl phenyllithium
explosive.	m-Bromo phenyllithium
Metal Peroxomolybdates	Organomineral Peroxides
2-Potassium tetraperoxomolybdate	Bis(triethyltin) peroxide
2-Sodium tetraperoxomolybdate	Diethylhydroxotin hydroperoxide
Metal Picramates	Oximes
Palladium picramate	Bromoacetone oxime
Uranyl picramate	Hydroxycopper glyoximate
	Potassium cyclohexanehexone 1,3,5-trioximate
Nitroaryl Compounds	Oxosalts of Nitrogenous Bases
N-Chloro-4-nitroaniline	Ammonium tetranitroplatinate (II)
	Diamminepalladium (II) nitrate
	1,2-Diammonioethane nitrate
Nitrogenous Base Nitrite Salts	Ozonides
Methylammonium nitrite	trans-2-Butene ozonide
,	

	Ethylene ozonide (1,2,4-trioxolane) Trifluoroethylene ozonide
aci-Nitroquinonoid Compounds Sodium 1,4-bis(aci-nitro)-2,5-cyclohexadienide	Perchlorate Salts of Nitrogenous Bases Pyridinium perchlorate Teteraethylammonium perchlorate
aci-Nitro Salts	<i>Triazoles</i>
Ammonium aci-nitromethanide	3-Diazo-5-phenyl-3 <i>H</i> -1,2,4-triazole
Dipotassium aci-dinitromethanide	4-Hydroxy-3,5-dimethyl-1,2,4-triazole
Thallium aci-phenylnitromethanide	1,2,3-Triazole
Picrates	Poly(dimercuryimmonium) Compounds
Nickel picrate (anhydrous)	Poly(dimercuryimmonium picrate)
S-7-Methylnonylthiouronium picrate	Poly(dimercuryimmonium permanganate)
Sodium picrate	Poly(dimercuryimmonium trinitrobenzoate)
Polymerization (violent)	Polynitroalkyl Coumpounds
Acrylic acid	Dinitroacetonitrile
Ethylene oxide	Hexanitroethane
Vinyl acetate	Potassium trinitromethanide
<i>Polynitroaryl Compounds</i> 5,6-Dinitro-2-dimethyl aminopyrimidinone 4-Nitro-1-picryl-1,2,3-triazole 2,4,6-Trinitrotolune	Silver Compounds Silver nitride (fulminating silver) Disilver ketenide Phenylsilver Silver azide Silver Osmate
Strained-Ring Compounds	<i>Tetrazoles</i>
2-Azatricyclo[2.2.102,6]hept-7-yl perchlorate	5-Aminotetrazole
Dicyclopropyldiazomethane	Silver and mercury salts of 5-nitrotetrazole
Prismane	Tetrazole