

Safe Method of Use 14 UN Class 8 - Corrosive Chemicals

Please note:

- UN Class 5 compounds and Toxic compounds may have very corrosive properties (eg Perchloric acid and Phenol).
- Concentrated nitric is a strong oxidising agent and **shall** be stored and handled appropriately.
- See specific Safe Method of Use for Hydrofluoric Acid

A. Incompatibilities

HSNO Class 8 compounds *shall* not be stored with HSNO Class 3, 4 or 5 compounds.

B. Storage

- HSNO Class 8 compounds *shall* not be stored with HSNO Class 3, 4 or 5 compounds.
- Acids *shall* be stored separately from alkalis.
- Strong mineral acids can react violently with organic compounds and bases and *shall* not be stored .with bases or organic compounds.
- All containers of strong mineral acids and phosphorous and sulphur halides *shall* be checked annually to ensure adequate labelling.
- Refer to SMOU for Oxidisers for specific recommendations concerning perchloric acid.

C. Use

- Fume hoods *shall* always be used when handling concentrated acids
- Safety Glasses and/or face shields *shall* always be worn when handling any corrosive liquid or solid.
- When diluting acid, ALWAYS add acid to water ("A comes before W") not water to acid.

D. Personal Protective Equipment

- Fume hoods *shall* always be used when handling concentrated acids
- Eye protection and/or face shields *shall* always be worn when handling corrosives
- Face shields, plastic coats and rubber gloves should be worn when handling bulk acids

E. Disposal

- Concentrated acids or bases *shall* never be discharged to sewer
- Disposal of concentrated acids or bases *shall* be undertaken by a licensed chemical waste contractor
- Please contact Hazards and Containment Manager to arrange for disposal.

F. Spills

- Use correct gloves
- Neutralise acids with a large volume of sodium bicarbonate or sodium carbonate which will neutralise and absorb liquid leaving a solid which can be swept up.
- Neutralise alkali spills with dilute acetic acid and absorb with absorbent or sawdust.
- Use absorbent material in spill kits to wipe up solvent wiping from outside of spill toward centre
- Place used absorbent material in impermeable/airtight container
- Inform Laboratory Manager and arrange for immediate disposal

Appendix 1: Representative List of UN Class 8 - Corrosives

Acids
Acius

Organic Acids and derivatives	
Acetic acid	Acetic anh
Acetyl iodide	Benzenesi

n-Butyric acid NN-Dimethylcarbamoyl chloride Diphenylmethyl Bromide Propionic acid Thioglycolic acid Trichloroacetic acid

nydride n-Butyric anhydride Propenoic acid Thymol Trifluoroacetic acid

Acetyl Bromide ulfonyl chloride Benzoyl chloride Bromoacetic acid Formic acid Propionic anhydride Toluene trichloride

Mineral Acids

Fluoroboric acid Hydrobromic acid Hydrofluoric acid Orthophosphoric acid Tetrachloroauric acid

Fluorophosphoric acid Hydroiodic acid Hydrophosphorous acid Sulphuric Acid

Fluorosilicic acid Hydrochloric Acid Nitric Acid Sulphurous acid

Other Acidic compounds

Aluminium bromide	Aluminium chloride	Antimony pentachloride
Antimony pentafluoride	Antimony trichloride	Boron Tribromide
Boron trifluoride	Bromine	Chromium fluoride
Chromium oxychloride	Copper (II) chloride	lodine chloride
lodine trichloride	Iron (III) chloride	Molybdenum
	ITON (III) CHIONGE	pentachloride
Phosphorous pentoxide	Phosphoryl tribromide	Phosphorous trioxide
Phosphoryl bromide	Phosphorous pentabromide	Phosphoryl trichloride
Potassium hydrogen sulfate	Potassium sulphide	Silicon tetrachloride
Sodium hydrogen difluoride	Sodium sulphide	Sulfur trioxide
Sulfuryl chloride	Thionyl chloride	Tin (IV) chloride
Vanadium oxytrichloride	Vanadium tetrachcloride	Vanadium trichloride
Zinc chloride		

Bases

Dageg		
Ammonia	Ammonium cerium sulphate	Ammonium hydrogen difluoride
Ammonium polysulphide solution	Caesium hydroxide	Lithium hydroxide
Potassium hydroxide	Sodium hypochlorite	Sodium hydroxide
Tetramethylammonium hydroxide	2-(2-Aminoethylpiperazine)	N-aminoethylpiperazine
NN-Dimethylbenzylamine	Cyclohexylamine	Di (n-butyl)amine
Dicyclohexylamine	Diethylenetriamine	N,N-Diethylenediamine
2-Dimethylaminoethanol	N,N-Dimethylcyclohexylamine	Diproylenetriamine
Ethanolamine	Ethylenediamine	Hexamthylenediamine
Hydrazine	Hydrazine hydrate	Propylenediamine
Tetraethylenepentamine	Tributylamine	Triethylenetetramine
Trimethylcyclohexylamine	Trimethylhexamethylenediamine	