

Safe Method of Use

Use of Protective Barriers for Potentially Explosive Reactions - Blast Shields and Fume Cupboard Sashes

General Guidelines

- While every care must be taken to ensure chemical reactions do not proceed in an uncontrolled manner, some chemical reactions carry a risk (however small) of becoming uncontrolled resulting in splash or burst hazard or in rare cases an explosion.
- There are two main sources of protective barrier available to protect laboratory personnel in such events – a blast shield and the fume cupboard sash.
- Blast shields can be moved into the fume cupboard for the duration of the experiment.
- Fume hood sashes are designed to be lowered to provide a physical barrier between reaction in the fume hood and laboratory personnel.
- Laboratory workers Student/Staff) shall wear and have accessible to full face shields when;
 - blast shields have to be removed to manipulate glassware
 - At any time where the Lab workers face may be exposed to an explosive reaction even with a blast shield in place.
 - Safety Glasses shall be worn in addition to a full face mask.
 - ➤ Tongs or other handling equipment should be used to manipulate glassware if there is any doubt over the stability/volatility of the synthesis & its potential to explode.
- Prior to conducting the experiment Laboratory workers shall consult the
 experimental procedure & adhere to any "Cautions" particularly where
 Blast Shields are recommended. They shall also consult closely with
 their supervisor.

Protective Barriers and their Use

A. Blast Shields

Use of blast shields is mandatory at all times for the following reactions:

- Reactions where there is a clearly stated explosion hazard for either reactants or products have a (e.g. IBX) or where reactants /products are those listed in Appendix 1 – Explosive and Potentially Explosive Chemicals
- 2. Any reactions involving diazonium compounds, diazomethane, highly nitrated compounds and when heating organic peroxides.
- 3. Reactions involving strong oxidising agents in quantities greater than 2 litres

4. Reactions involving strong reducing agents (such as Lithium Aluminium hydride) in quantities greater than 2 litres.

B. Fume hood sashes

Fume hood sashes must be lowered to fullest extent when the following procedures are left unattended:

- 1. Reactions involving organolithiums, chlorination intermediates, butadiene, nitration intermediates, organic sulfates, polymerization reactions
- 2. Large scale distillations.

Any faults or observed lack of airflow in the fumehood when the fume hood sashes are lowered must be reported to the Laboratory Manager immediately.

Appendix 1 – Explosive and Potentially Explosive Chemicals

Explosive chemicals can release tremendous amounts of destructive energy rapidly. If not handled properly, these chemicals can pose a serious threat to the health and safety of laboratory personnel, emergency responders, building occupants, chemical waste handlers, and disposal companies. For example, an explosion of old isopropyl ether killed a laboratory worker when he attempted to remove a glass stopper from the container. In another instance, tetrazole exploded inside a hazardous waste incinerator, causing major damage and costly repairs.

Potentially explosive chemicals (PECs), which include peroxidizable organic chemicals. Most chemicals that are used in research and teaching laboratories are stable and non-explosive at the time of purchase. Over time, some chemicals can oxidize, become contaminated, dry out, or otherwise destabilize to become PECs (e.g., isopropyl ether, sodium amide, and picric acid). See Appendix I—Explosive and Potentially Explosive Families— for examples.

Unlike known explosives, which are designed to be stable under normal conditions, PECs are particularly dangerous because they may explode if they are subjected to heat, light, friction, or mechanical shock.

Common Laboratory PECs

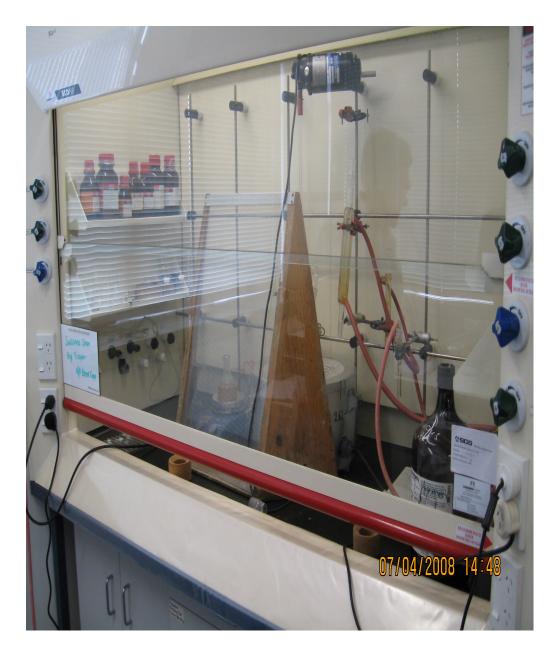
There are many PECs used in academic research laboratories.

The following are some commonly used chemicals that can become an explosion hazard under certain conditions:

- Organic chemicals that form peroxides through exposure to air or light (see Appendix II — Peroxide Forming Chemicals)
- Hydrated picric acid that becomes dry or becomes contaminated with metals that form metal picrate salts

- Sodium amide that reacts with air or moisture to form superoxides, as evidenced by yellow or brown discoloration
- Certain alkyl nitrates (e.g., butyl nitrate or propyl nitrate) that become contaminated with nitrogen oxides
- Certain normally stable perchlorates (e.g., pyridium perchlorate or tetraethylammonium perchlorate) that become unstable at elevated temperatures

Note: Most explosions occur while purifying or distilling mixtures. Therefore, use extreme caution before concentrating or purifying any mixture that may contain an explosive chemical (e.g., a peroxide forming chemical or perchlorate).


There is an additional group of chemicals that should be considered although they are not necessarily heat-, light-, friction-, or shock-sensitive. These chemicals give off gaseous degradation by-products that may cause over-pressurization of the container and explode. They can degrade over time and should be incorporated into a safety and handling system that will prevent them from becoming explosive hazards.

Explosive and Potentially Explosive Chemical Families

Acetylene or acetylide compounds: N-Chloro-3-aminopropyne Propiolic acid Propynethiol	Diazo compounds 2-Buten-1-yl diazoacetate Diethyl diazomalonate Dinitrodiazomethane
Organic Azides Diazidomethyleneazine Picryl azide Vinyl azide Acetyl azide Cyanodiazoacetyl azide Phenylphosphonic azide chloride	Diazonium carboxylates, perchlorates, salts, sulfates, tetrahaloborates, and, triiodides Benzenediazonium-2-carboxylate 4-Aminobenzenediazonium perchlorate 6-chloro-2,4-dinitrobenzenediazonium sulfate 2-Nitrobenzenediazonium tetrachloroborate 4-Toluenediazonium triiodide
Acyl hypohalites Acetyl hypobromite Hexafluoroglutaryl dihypochlorite	Difluoroaminoalkanols 1,1-Difluorourea Perfluoro-N-cyanodiaminomethane
Alkyl nitrates Ethylidene dinitrate Glyceryl trinitrate Propyl nitrate	Fluoro—nitro compounds 1-Fluoro-1,1-dinitrobutane Fluorodinitromethyl azide
Alkyl perchlorates Hexyl perchlorate Ethyl perchlorate 1-Chloro-2-propyl perchlorate	Fulminating metals Lead fulminate Gold fulminate Silver fulminate
Allyl trifluoromethanesulfonates 2-Chloro-2-propenyl trifluoromethanesulfonate	Furazan N-oxides Dicyanofurazan N-oxide 4-Oximino4,5,6,7-tetrahydrobenzofurazn N-oxide
Amminemetal oxosalts Ammonium hexanitrocobaltate	Hydroxooxodiperoxochromate salts 1-Ammonium hydroxooxodiperoxochromate

Bis(1,2-diaminoethane) diaquacobalt (III) perchlorate	Potassium hyroxooxodiperoxochromate
Trihydrazine nickel (II) nitrate	
Aromatic nitrates	Iodine Compounds
Picric acid	Calcium 2-iodylbenzoate
Trinitrobenzene	lodobenzene
Picryl sulfonic acid	2-lodylvinyl chloride
Trinitroresorcinol	In the second of
Azides Hydrogen azide	Isoxazoles 3-Aminoisoxazole
Trydrogen azide	3,5-Dimethylisoxazole
Aziridines	Metal Azide Halides
1-Bromoaziridine	Chromyl azide chloride
	Molybdenum diazide tetrachloride
	Tungsten azide pentachloride
Azocarbaboranes	Metal Azides
1,1-'Azo-1,2-dicarbadecaborane	Aluminum azide
	Bis(cyclopentadienyl)tungsten diazide oxide
	Mercury (I&II) azide
	Lead azide
N. Azolium nitroimidatos	N-Metal Derivatives
N-Azolium nitroimidates Benzimidazolium 1-nitroimidate	Cadmium nitride
4-Nitroamino-1,2,4-triazole	
2-(N-Nitroamino)pyridine N-oxide	Dibutylthallium isocyanate Sodium amide
Perchloramide Salts	Metal Fulminates
Barium perchloramide	Mercury (II) fulminate
Mercury (II) N-perchloryl benzylamide	Sodium fulminate
Silver perchlorylamide	Tripropyllead fulminate
Metal Halogentates	Perchloryl Compounds
Lead bromate	2,6-Dinitro-4-perchlorylphenol
Lead bromate	Perchloryl fluoride
	N-Perchloryl piperidine
Metal Hydrides	Peroxyacid salts
Stibine (Antimony hydride)	Calcium peroxodisulfate
, , , , , , , , , , , , , , , , , , ,	Potassium tetraperoxomolybdate
	Tetramethylammonium pentaperoxodichromate
Metal Nitrophenoxides	Peroxy and lodoxy acids
Lithium 4-nitrothiophenoxide	Benzenperoxyselennic acid
Potassium 4-nitrophenoxide	Peroxyacetic acid
·	Peroxyformic acid
	o-lodoxybenzoic acid (IBX)
Metal Oxides	Peroxycarbonate esters
Bis (1-chloroethylthallium chloride) oxide	O-O-tert-Butyl isopropyl monoperoxycarbonate
Magnesium chloride trioxide	Diallyl peroxydicarbonate
	Dimethyl peroxydicarbonate
Metal Oxohalogenates	Phosphorus esters
Ammonium iodate	Diethyl phosphite
Lead acetate-lead bromate	Dibenzyl phosphorchloridate
Metal Oxometallates	Nitroso Compounds
Bis (benzene) chromium dichromate	Dinitrosylnickel
	Ethyl N-methyl-N-nitrosocarbamate
	Potassium nitrosodisulfate
Metal Perchlorates	N–S Compounds
Chromyl perchlorate	Disulfur dinitride
	Potassium sulfurdiimidate

	Tetrasulfur tetranitride Thiotrithiazyl nitrate
Metal Peroxides	Organolithium Reagents
Many transition metal peroxides are dangerously	o-Trifluoromethyl phenyllithium
explosive.	m-Bromo phenyllithium
	' '
Metal Peroxomolybdates	Organomineral Peroxides
2-Potassium tetraperoxomolybdate	Bis(triethyltin) peroxide
2-Sodium tetraperoxomolybdate	Diethylhydroxotin hydroperoxide
Metal Picramates	Oximes
Palladium picramate	Bromoacetone oxime
Uranyl picramate	Hydroxycopper glyoximate
	Potassium cyclohexanehexone 1,3,5-trioximate
Nitroaryl Compounds	Oxosalts of Nitrogenous Bases
N-Chloro-4-nitroaniline	Ammonium tetranitroplatinate (II)
	Diamminepalladium (II) nitrate
	1,2-Diammonioethane nitrate
Nitrogenous Base Nitrite Salts	Ozonides
Methylammonium nitrite	trans-2-Butene ozonide
	Ethylene ozonide (1,2,4-trioxolane)
	Trifluoroethylene ozonide
aci-Nitroguinonoid Compounds	Perchlorate Salts of Nitrogenous Bases
Sodium 1,4-bis(aci-nitro)-2,5-cyclohexadienide	Pyridinium perchlorate
	Teteraethylammonium perchlorate
aci-Nitro Salts	Triazoles
Ammonium aci-nitromethanide	3-Diazo-5-phenyl-3 <i>H</i> -1,2,4-triazole
Dipotassium aci-dinitromethanide	4-Hydroxy-3,5-dimethyl-1,2,4-triazole
Thallium aci-phenylnitromethanide	1,2,3-Triazole
Picrates	Poly(dimercuryimmonium) Compounds
Nickel picrate (anhydrous)	Poly(dimercuryimmonium picrate)
S-7-Methylnonylthiouronium picrate	Poly(dimercuryimmonium permanganate)
Sodium picrate	Poly(dimercuryimmonium trinitrobenzoate)
Polymerization (violent)	Polynitroalkyl Coumpounds
Acrylic acid	Dinitroacetonitrile
Ethylene oxide	Hexanitroethane
Vinyl acetate	Potassium trinitromethanide
Polynitroaryl Compounds	Silver Compounds
5,6-Dinitro-2-dimethyl aminopyrimidinone	Silver nitride (fulminating silver)
4-Nitro-1-picryl-1,2,3-triazole	Disilver ketenide
2,4,6-Trinitrotoluene	Phenylsilver
	Silver azide
	Silver Osmate
Strained-Ring Compounds	Tetrazoles
2-Azatricyclo[2.2.102,6]hept-7-yl perchlorate	5-Aminotetrazole
Dicyclopropyldiazomethane	Silver and mercury salts of 5-nitrotetrazole
Prismane	Tetrazole

Ideal use and set up of a Blast Shield. Note that the combination of fully lowered fume hood sash and Blast Shield assist in containing any potential explosion.