Transmission Electron Microscopy (TEM) at UoA

A new Research Journey begins.....

Dr. Shanghai Wei

Auckland Science Analytical Services (ASAS) Department of Chemical & Materials Engineering March 2015

Content

♦ My 'MMMs'

- An Unexpected Journey
- What is TEM?

TEM Techniques

- Diffraction
- Imaging
 - Bright field image
 - Dark field image
- HRTEM
- STEM & EDS

Transmission Electron Microscopes in Image Centre

- CM12, TF12, TF20
- TEM sample Preparation

My Journey...

An Unexpected Journey

D. Shindo - K. Hiraga High-Resolution Electron Microscopy for Materials Science

Copying a few chapters for a Professor

- Large dark spots --- heavy atomic columns such as TI and Ba
- Bright spots -- vacant oxygen

Lattice image (viewed along [010]) + Modeling.

3

High resolution image of a superconducting oxide TIBa₂Ca₃Cu₄O₁₁

My Journey...

Develop new Mg alloys with high strength and ductility

1) Characterisation of the morphology, orientation, and composition of precipitates using BF, SAD, EDS techniques

BF images, viewed along <11-20> and [0001]

EDS results of precipitates

My Journey...

2) Characterisation of nanostructured precipitates using BF, SAD, HRTEM, STEM & EDS

What is TEM?

- * TEM is a technique for characterizing materials down to atomic limits.
 - Significant impact on fields such as: materials science, biological science, medical science, geology, environmental science, among others.
 - Can be used for investigating the morphology and structure in physical and biological science.
 - Also enables the investigation of crystal structures, orientations and chemical compositions of phases and nano-structured materials
- * A TEM can appear in several different forms, such as HRTEM, STEM, and EFTEM.

Transmission electron microscope is an extremely expensive piece of equipment!

What is TEM?

Comparison between SEM and TEM

- SEM: Invented in 1942. electrons are scanned over the surface of the sample.
- TEM: Knoll & Ruska in 1931. electrons are transmitted through the sample.

SFM Incident		SEM	ТЕМ
Backscattered electrons (BSE) Auger electrons	Resolution	Low	High
	Sample preparation	Easy	Complex
'Absorbed' electrons Electron-hole pairs Bremsstrahlung X-rays Elastically scattered electrons Direct beam TEM	Results	3D image, representation	2D image, require interpretation
	Application	Surface characterization	Structure and crystallographic defects down to nanoscale

TEM Techniques

- Diffraction
 - Selected-area diffraction (SAD)
 - Convergent beam electron diffraction (CBED)

Imaging

- Bright/Dark field image
- High-resolution TEM (HRTEM)
- Scanning TEM (STEM)
- Spectroscopy
 - Energy-dispersive X-ray (EDX) spectroscopy
 - Electron Energy-loss Spectroscopy (EELS)
- Other techniques
 - ✤ 3D Tomography
 - ✤ Cryo-TEM

TEM Techniques...

Diffraction

- Imaging of tiny structures in a thin specimen and the diffraction pattern of the same structures --- one of the main advantage of TEM
- The basis of all image formation in the TEM

Diffraction pattern formation

- DP formed in back focal plane of objective lens. ---Location of back focal plane determined by strength of objective lens.
- Intermediate lens must focus at this point

DP Types and Uses

Diffraction patterns can be used:

- Crystallographic analysis
- Determine the orientation of crystals or phases
- Analysis of interfaces, twinning and certain crystalline defects

There are several kinds of DP:

Amorphous carbon

Polycrystalline of Mg alloy

Mg single crystal CBED p

CBED pattern for Si [111]

Convergent Beam Electron Diffraction (CBED)

Very useful for nanocrystalline materials

	SAD	CBED
Incident beam	Parallel	convergent
Selected area	$1{\sim}10\mu m$ in diameter	1~100nm in diameter

Diffraction spots and no visible Kikuchi lines

Dynamical contrast within the disks as well as diffuse kikuchi bands and sharp HOLZ lines

SAD from [111] Si CBED pattern from [111] Si

TEM Techniques...

Imaging

Formation of TEM image

Amorphous Amorphous Amplitude contrast Mass-thickness contrast incoherent scattering from the sample Z-contrast imaging Diffraction contrast

 Either the direct beam or one of the diffracted beams is selected to form the image

Phase contrast

 Direct and diffracted beams undergo phase shifts in the material

Contrast of TEM image

Bright Field / Dark Field Imaging

BF image formed from the direct beam

DF image formed from the diffracted beam

BF & DF Imaging...

Example

BF image and SAD of Zn-Ni-Al2O3 composite coating

DF image of the same area

High-resolution TEM (HRTEM)

- The image is formed by the interference of the diffracted beam with the direct beam (phase contrast image)
- The interpretation of HRTEM images has to be confirmed by image simulation, like JEMS
- Typically requires very thin TEM specimens free of preparation artefacts.

<50nm (the optimum is 5~20nm

objective aperture

diffraction pattern

HRTEM image

Application & Example

> Morphology and crystal structure of nano-structured materials

HRTEM

Application & Example

> Analysing crystalline defects and interfaces at the atomic scale

The inset shows the proposed atomic structure model of the interface

HRTEM image, along the $[001]_{\beta}//[2-1-10]_{\alpha}$ direction

TEM Techniques...

STEM

Example

(A) HAADF-STEM image showing a {10-12} twin boundary (TB) in a sample of Mg alloy. (B) and (C) STEM-EDX maps showing the segregation of both Gd and Zn in the TB shown in (A).

HRTEM and HAADF-STEM (Z-contrast)

	HRTEM	HAADF-STEM
Basics	Interference of coherently scattered electron waves	Incoherent scattering
Point resolution	<0.27nm (Our TF20 TEM)	<0.34nm (Our TF20 TEM)
Image interpretation	Confirm with simulations; at Scherzer defocus: atom columns dark	Direct; intensity ~Z ² (Z: atomic number)

HRTEM image dark --- Metal atom columns

HAADF-STEM (Z contrast) image: Bright spots --- metal atoms

TEM Techniques...

Energy-dispersive X-ray (EDX) spectroscopy

- 1st used on TEMs in the early 1970s
- Chemical composition analysis
- EDS analysis in the TEM can be performed on very small areas due to very small interaction volume.

Electron beam/sample interaction

TEM Techniques...

Electron Energy-loss Spectroscopy (EELS)

 10^{10} ✤ Inelastic scattering causes loss of the energy Counts Zero-loss of electrons Plasmon 10^{8} Thin specimen required Ni M_{2.3} EELS spectrometer has a very high energy 10^{6} O K resolution Ni L2,3 complementary to X-ray spectroscopy 10^{4} can be utilized for low energy loss qualitative and High energy loss quantitative element 10^{2} analysis as well 200400600 800

Energy loss (eV)

Example of EELS spectra

Can be used in forming energy filtered images

Chemical Analysis

EELS and EDX

	EELS	EDX
Ease of use	Medium	High
Spatial resolution	Good	Beam broadening
Contamination sensitive	Yes	no
Visibility	Low	High
Peak overlap	No	Can be severe
Qualitative analysis	easy	Easy
Sensitivity light elements	High	Low
Sensitivity heavy elements	Low	High
Quantification	Easy	Easy
Accurate quantification	Complicated	Complicated
Energy resolution	High	Low

TEM Techniques...

3D Tomography

- ➤ The sample is tilted in the microscope from +70° to -70° with 1 degree increment.
- Powerful computer softwares used to 3D reconstruction, such as Imaris, Amira and AutoQuant.
- Very time consuming process

Acquisition

Reconstruction

Cryo-TEM for materials science

- To minimise the electron beam damage
- Samples are analysed at low temperatures (usually at ~-170°C cooling by liquid Nitrogen)

Crystal structure analysis of glass ceramic lithium disilicate

Limitations of TEM

- The field of view is relatively small
- Electron beam damage

- Interpreting TEM images is challenging: an image represents a 2D projection of a 3D specimen
- ✤ A major limitation --- thin specimens:
 - The usual sample thickness is ~100-200nm (~10-20nm for HRTEM)
 - The structure of the sample may be changed during the preparation process

Electron Microscope in Image Centre

- Located at the School of Biological Sciences, Thomas building.
- The centre specialises in transmission electron microscopy (including cryo-TEM)

Dr Adrian Turner (Centre Manager)

In charge of the materials science and TEM in the Centre

Electron Microscopes in Image Centre

Philips CM12 TEM (CM12)

✤ 120 kV

- single tilt, double tilt, and cryo specimen holders
- ✤ Applications: BF; DF; SAD

✤ FEI Tecnai 12 TEM (T12)

✤ 120 kV

- optimised for Cryo-TEM, with cold stages
- Single and double tilt
- ✤ Applications: BF, DF, SAD

Electron Microscope in Image Centre

✤ FEI Tecnai FEG20 TEM (TF20)

- ✤ FEG 200 kV
- TEM/STEM mode
- Chemical compositional analysis
 Edax EDS.
 - ✤ Gatan energy filter
- Single, double tilt, tomography and cryo holders.

* Techniques:

BF; DF; SAD; CBED; HRTEM; STEM; EFTEM, EDS; EELS; 3D tomography.....

★ TEM resolution:
 Point: ≤0.270nm
 Line: ≤0.144nm
 ★ STEM resolution: ≤0.34nm

TEM sample

Inorganic Specimens Preparation

Samples need to be extremely thin (~100nm) so electron beam can penetrate

Specimens Preparation Equipment

Leica EM UC6 Ultramicrotome

- Ultra-thin sectioning of material for TEM (40 and 100 nm).
- Diamond knives and glass knives are used with ultramicrotome

Inorganic Specimens Preparation

Sample Preparation Equipment

Disc punch

Ultrasonic Cutter

Struer Twin-jet electro-polishing system

Dimple grinder

Fischoine mode 1010 Ion mill

Summary

TEM is a very versatile analysis technique.

- Many different types of analysis can be performed
- Complimentary information can be obtained from distinct small (nm) regions allowing full nano-scale characterisation.

Thank you for participating