Welcome to the Faculty of Science

Carl Sagan once said that “science is a way of thinking much more than it is a body of knowledge”. Studying Science at the University of Auckland will give you both the disciplinary knowledge and that “way of thinking”. Together these will allow you to make a career in your chosen discipline and provide you with the means to understand and address the challenges confronting society – and science – in the 21st century.

At the University of Auckland we cover a comprehensive range of disciplines in the courses we offer. You will be able to choose from a diverse range of undergraduate degrees and subjects, including the Bachelor of Science with its large variety of majors. In a rapidly changing world the option to build on your undergraduate degree by pursuing one of our specialised postgraduate qualifications will give you vocational flexibility.

Whatever discipline you choose and whatever courses you take, you will discover that science itself is continually evolving. It integrates and embraces topics from cells to society, quarks to computation. Our approach is to provide you with the education to understand that evolution and to allow you to enter not only today’s science-based careers, but those that will come in the future.

As a student at the University of Auckland, you will benefit from studying at New Zealand’s world-ranked university*.

Our staff include the largest group of top-ranked, internationally renowned scientists in New Zealand, presenting you with knowledge at the cutting edge of science. Your education will be enhanced through outstanding teaching facilities – from some of our leading-edge laboratories, including those in our new Science Centre building, to a comprehensive marine campus. You will also be able to enjoy all the recreational and cultural opportunities that Auckland City, the “City of Sails” has to offer.

Congratulations on your decision to study at the University of Auckland. I look forward to welcoming you to New Zealand’s largest Faculty of Science.

PROFESSOR JOHN HOSKING
Dean of Science
The University of Auckland

*www.science.auckland.ac.nz/excellence
Welcome to the Faculty of Science

Why study with us? 5
What can you study? 7
Planning your BSc degree 8
Conjoint degree programmes 10

BSc majors

Anthropological Science 13
Biological Sciences 13
Biomedical Science 14
Biotechnology 14
Chemistry 14
Computer Science 15
Data Science 15
Earth Sciences 15
Ecology 17
Environmental Science 17
Exercise Sciences 18
Food Science and Nutrition 18
Geography 20
Geophysics 20
Information Systems 21
Logic and Computation 21
Marine Science 21
Mathematics 23
Medicinal Chemistry 23
Pharmacology 24
Physics 24
Physiology 25
Psychology 25
Statistics 25

Things to think about

Where can it take you? 28
Getting involved in faculty life 31
Entry requirements 32
Calculating your rank score 33
Dates to remember 34
How to apply 35
Why study with us?

The Faculty of Science at the University of Auckland is a fantastic place to study! Throughout the world, the University of Auckland is known for the quality of its research, so your Science degree will be internationally recognised.

Study choices

The University of Auckland’s Faculty of Science is the largest in New Zealand and offers a wide and exciting variety of majors and specialisations. In your first year you’ll typically take eight courses in up to three different majors, enabling you to try different subjects and keep your options open for your second year of study.

Quality teaching and outstanding research

Throughout your student career, you will be taught by knowledgeable academics, many of whom are major contributors in their fields. Some of our staff are among the most distinguished research scientists in New Zealand and are internationally recognised for their work.

Student facilities and support

We offer a variety of teaching facilities and a vast range of learning and personal support services. First-year courses have dedicated staff to assist with your learning and help you to have an enriching experience. The Science Student Centre offers general information and advice on courses and programmes. Māori and Pacific students are welcome to join the Tuakana programme, where enthusiastic mentors help you to get the most out of your studies. We’re all here to help you.

Skills to succeed

A Science degree offers a multitude of career paths. You will be in a strong position to maximise your employment opportunities by identifying your strengths, researching work areas that relate to these, and acquiring strong communication skills and the ability for creative and critical thinking.

www.science.auckland.ac.nz/future-undergraduates

Accommodation

www.accommodation.auckland.ac.nz

Scholarships

www.scholarships.auckland.ac.nz
Andrea Kenwright
Andrea is studying for a Bachelor of Science and Commerce conjoint majoring in Exercise Sciences, and Marketing and Management.

"I choose to study at the University of Auckland because it is rated as the top university within New Zealand, and its global recognition. The University of Auckland is one of the few New Zealand universities that offers Exercise Sciences as a science major.

"Through many years of involvement in national and international-level sports I developed a strong interest in anatomy, physiology, and how physical performance could be enhanced. I wanted to gain a greater understanding of how the human body works, so that I could further apply this knowledge to sporting environments, and in daily life. I chose to study a Bachelor of Commerce as a conjoint with my BSc so that I could have the ability to manage my own practice in the future.

"I’m looking to pursue postgraduate qualifications in clinical exercise physiology. Clinical exercise physiology is a field which focuses on the prevention, management, and rehabilitation of chronic conditions and injuries with the use of exercise. With my conjoint in Commerce, I could work in the high performance sport sector, in a management or marketing position.

"I really enjoy the amount of hands-on experience I get in my BSc. There isn’t a single week in which you aren’t required to put your knowledge to use in a practical situation.

"The Exercise Sciences lecturers are very approachable and willing to go out of their way to support you in your studies. I’ve been able to build strong relationships with my classmates and form valuable student networks – we’re all really supportive of each other!"
What can you study?

Undergraduates start their study in Science in the Bachelor of Science (BSc). Within the BSc, the main areas include biological sciences, human and earth sciences, computational sciences, physical sciences and health-oriented sciences. As well as learning the academic skills and techniques that are part of your chosen major, you will also have exposure to new technologies.

Quick facts – Bachelor of Science (BSc)

Full-time: 3 years
Points per degree: 360 (24 15-point courses)
Taught at: City Campus
Majors: Choose from the large variety outlined on pages 10-19.
Application closing dates:
 1 December 2017 for Exercise Sciences
 8 December 2017 for all other majors and specialisations (Late applications will be considered if places are available.)
Classes start:
 Semester One: 26 February 2018
 Semester Two: 16 July 2018
For more information visit
www.science.auckland.ac.nz/bsc

What you’ll be studying

In the first year you should:

• Take a total of eight courses for up to three different majors. This enables you to follow your interests and try different subjects, while keeping your options open for your second year.

In your second and third year you should:

• Take a range of advanced courses relating to your choice of major, as well as other related areas within the Science Schedule to add depth to your knowledge.

• Take courses from the General Education Schedules.

If you need any advice planning your Bachelor of Science or conjoint degree, please contact the Science Student Centre.

Regulations and requirements for your BSc

You take a BSc by “majoring” in one or two subjects (advancing them to Stage III) and adding a range of supporting subjects for skills and interest. BSc courses are worth 15 points each.

You will need:

• 360 points (24 courses) drawn from at least three subjects. Students usually take eight courses per year as a full-time student.

• At least 180 points (12 courses) above Stage I.

• At least 75 points (five courses) at Stage III for the degree, with at least four of these in your first majoring subject. A second major requires at least three Stage III courses, and you will take six Stage III courses in total if you intend to apply for honours in your fourth year.

• 30 points (two courses) from the General Education Schedule, preferably taken in your second or third year.

• You may include up to 30 points (two courses) from outside the Science Schedule, depending on your chosen major.

Note that some majors are available as a single major only.
Planning your BSc degree

Students typically take eight courses a year, with four per semester. Select the courses you are most likely to major in, and check the requirements for those majors as well as the first-year requirements.

www.science.auckland.ac.nz/core-courses

Then, add supporting courses for skills and interest.

www.science.auckland.ac.nz/interest-courses

Check that you have the prerequisites for the Stage II and III courses you want to take. Prerequisites are courses that you need to pass to advance to the next stage.

www.science.auckland.ac.nz/planning-your-bsc

Typical programme for a BSc student

<table>
<thead>
<tr>
<th>Year</th>
<th>Usually 8 courses over Semesters One and Two</th>
<th>Summer School</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 courses Eight courses from four to five subjects; four per semester</td>
<td>Use Summer School for additional courses or to spread the workload</td>
</tr>
<tr>
<td>2</td>
<td>8 courses Advance two to three subjects to Stage II Take one General Education course</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8 courses At least five Stage III courses including four in your major Take one General Education course. For a double major take four Stage III courses in your first major and three Stage III courses in your second major</td>
<td></td>
</tr>
</tbody>
</table>

Note: The actual number of courses at any level in each subject may vary.

Numbers checklist:

<table>
<thead>
<tr>
<th>360</th>
<th>points in a BSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>courses – 15 points per course</td>
</tr>
<tr>
<td>8</td>
<td>usual number of courses per year</td>
</tr>
<tr>
<td>7</td>
<td>minimum number of courses to be in full-time study</td>
</tr>
<tr>
<td>6</td>
<td>minimum Stage III courses if you intend to take honours in your fourth year</td>
</tr>
<tr>
<td>5</td>
<td>minimum Stage III courses for the degree</td>
</tr>
<tr>
<td>4</td>
<td>minimum Stage III courses for a first major</td>
</tr>
<tr>
<td>3</td>
<td>minimum Stage III courses for a second major</td>
</tr>
<tr>
<td>2</td>
<td>maximum number of courses in a BSc that may be taken from outside the Faculty of Science (none in conjoints)</td>
</tr>
<tr>
<td>2</td>
<td>General Education courses</td>
</tr>
</tbody>
</table>
BSc single major degree planner

To view regulations for majors see www.calendar.auckland.ac.nz
BSc degree requires: 360 points (24 15-point courses). Each box represents one 15-point course.
It is usual for students to enrol in eight courses each year, four per semester.

1. Courses in a minimum of three subjects listed in the BSc Schedule.
2. At least 180 points (12 courses) above Stage I.
3. At least 30 points (two courses) must be taken from the General Education Schedules.
4. Up to 30 points (two courses) may be taken from outside the Faculty of Science.
5. At least 75 points must be at Stage III, of which 60 points must be in the majoring subject.

It is the student’s responsibility to check that the final programme complies with University Regulations.
The Faculty of Science is the final authority on all BSc regulations.

Regulations specific to your major can be found online at www.calendar.auckland.ac.nz
Conjoint degree programmes

Conjoint degree programmes allow very able students to complete another degree alongside their BSc in a reduced time frame. If you have broad interests, a conjoint degree could be the programme for you. Conjoint degrees strengthen your employability, and a Science conjoint gives you an advantage in the professional world because you’ll be able to work with scientists and apply the principles of science to your role. Conjoint students must complete both degrees before they are eligible to graduate.

Combinations are available with: Arts (BA/BSc), Commerce (BCom/BSc), Engineering (BE(Hons)/BSc), Health Sciences (BHSc/BSc), Law (BSc/LLB or BSc/LLB(Hons)), Music (BMus/BSc), Nursing (BNurs/BSc) and Property (BProp/BSc).

With the exception of Engineering and Law, all these programmes can typically be completed in four years, although many students take a semester longer.

The BSc component of a conjoint programme consists of 18 courses (270 points) and may include your compulsory General Education course. (This course can be completed as part of either degree in your conjoint).

Not all BSc subjects are available as a major in a conjoint programme. See below and check the regulations.

 Majors available for the BSc component of a conjoint are:

The 270 points must include:

- At least 10 courses (150 points) above Stage I (thus no more than 120 points at Stage I level).
- At least five courses (75 points) above Stage II in a BSc subject major, of which at least four must be at Stage III in the majoring subject.
- 15 points from a course offered in the approved General Education Schedules. This course may be included as part of either component for your conjoint. If you choose to include it on the non-Science side of the conjoint, an additional 15 points from the Science courses will substitute for this in the BSc.

With careful planning, it may be possible to include two majors (a double major) in the BSc component.

Depending on your programme, try to split your enrolment between each side of your conjoint – and plan carefully to allow for smooth progression. The advisers in the Science Student Centre will be happy to help.

It is important to take note of any special conditions that may apply. Consult The University of Auckland Calendar or faculty advisers.

www.science.auckland.ac.nz/conjoint
Example conjoint degree planner

To view regulations for majors see www.calendar.auckland.ac.nz
Each box represents one 15-point course.
Conjoint degree students usually enrol in nine courses each year.

You should include your compulsory General Education course, which can be completed as part of either degree in your conjoint. www.auckland.ac.nz/generaleducation

Find degree planners specific to your major at www.science.auckland.ac.nz/degree-planners
Conjoint students complete 18 courses in their BSc instead of the usual 24 courses

Important points for the BA component – STUDENTS MUST:

1. Complete the requirements for EITHER a single major (135 points (nine courses), including 60 points (four courses) at Stage III) OR a double major (120 points (eight courses), including 45 points (three courses) at Stage III per major). (Some majors have specific course requirements. Consult the University Calendar, Arts Students’ Centre or the Arts Undergraduate Handbook for more details.)
2. Complete at least 150 points above Stage I.
3. Complete at least 75 points at Stage III regardless of single or double major status.
4. We would also recommend that you take no more than 120 points (eight courses) at Stage I (including General Education if taken at Stage I) as this would mean you are effectively taking more courses than are necessary to complete your degree.

See the Arts Students’ Centre for further advice on the BA component of the conjoint.

It is the student’s responsibility to check that the final programme complies with University Regulations. The Faculty of Science is the final authority on all BSc regulations. Fifteen points must be a General Education course from the appropriate schedule.

Requirements for BSc conjoint component:

Total: 255 points (17 Science courses at 15 points each)

1. A BSc must have at least 60 points at Stage III in the major and an additional 15 points from another Stage III Science course.
2. At least 150 points above Stage I, including at least 75 points at Stage III.
3. If completing a double major, your first major must include 60 points at Stage III; your second major must include 45 points at Stage III as outlined in the BSc Schedule. Students must meet the requirements for each major separately (no double counting courses).
4. 90 points at Stage III for students intending to apply for honours.

<table>
<thead>
<tr>
<th>BA</th>
<th>BSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>Stage II or III</td>
</tr>
<tr>
<td>Stage II</td>
<td>Stage II or III</td>
</tr>
<tr>
<td>Stage III</td>
<td>Stage II or III</td>
</tr>
</tbody>
</table>

- **Single major** - at least 60 points at Stage III in each
- **Double major** - at least 45 points at Stage III in each
- **First or single major** - 60 points at Stage III plus an additional Stage III Science course

Stage I

<table>
<thead>
<tr>
<th>Stage I</th>
<th>Stage II</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEN ED</td>
<td></td>
</tr>
</tbody>
</table>

First or single major: 60 points at Stage III plus an additional Stage III Science course.

Single major - at least 60 points at Stage III

Requirements for BSc conjoint component:

- No more than 105 points at Stage I (including 15 points General Education), which, with appropriate prerequisites, can ultimately be taken in Stage II or III.
<table>
<thead>
<tr>
<th>BSc majors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropological Science</td>
<td>13</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>13</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>14</td>
</tr>
<tr>
<td>Biomedical Science</td>
<td>14</td>
</tr>
<tr>
<td>Chemistry</td>
<td>14</td>
</tr>
<tr>
<td>Computer Science</td>
<td>15</td>
</tr>
<tr>
<td>Data Science</td>
<td>15</td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>15</td>
</tr>
<tr>
<td>Ecology</td>
<td>17</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>17</td>
</tr>
<tr>
<td>Exercise Sciences</td>
<td>18</td>
</tr>
<tr>
<td>Food Science and Nutrition</td>
<td>18</td>
</tr>
<tr>
<td>Geography</td>
<td>20</td>
</tr>
<tr>
<td>Geophysics</td>
<td>20</td>
</tr>
<tr>
<td>Information Systems</td>
<td>21</td>
</tr>
<tr>
<td>Logic and Computation</td>
<td>21</td>
</tr>
<tr>
<td>Marine Science</td>
<td>21</td>
</tr>
<tr>
<td>Mathematics</td>
<td>23</td>
</tr>
<tr>
<td>Medicinal Chemistry</td>
<td>23</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>24</td>
</tr>
<tr>
<td>Physics</td>
<td>24</td>
</tr>
<tr>
<td>Physiology</td>
<td>25</td>
</tr>
<tr>
<td>Psychology</td>
<td>25</td>
</tr>
<tr>
<td>Statistics</td>
<td>25</td>
</tr>
</tbody>
</table>
BSc majors

The information provided in pages 13-25 does not indicate course availability or course changes for 2018. For all information and conditions, including prescriptions for a second major, please refer to The University of Auckland Calendar or visit the appropriate web pages.

Anthropological Science

Anthropology is the study of humankind, including our biology, culture and diversity. This major offers you the chance to develop scientific skills and learn new technologies that will support research in bio-anthropology and archaeology.

Majors such as Biological Science, Chemistry, Earth Science, Environmental Science, Geography and Statistics are particularly useful alongside your anthropological studies – you should take courses in one or more of these subjects in your first year. In your first year, you must take ANTHRO 101 World Archaeology and ANTHRO 102 How Humans Evolved. STATS 101 Introduction to Statistics would also be useful, though it's not compulsory.

A single or first major should include:

- 30 points: ANTHRO 101, 102
- At least 15 points: ANTHRO 200, 201
- At least 15 points: ANTHRO 205, 206, 207, 211, 222, 235, 245, 249
- At least 90 points, including at least 15 points at Stage III from courses available in the following subjects: Biological Sciences, Chemistry, Earth Sciences, Environmental Science, Geography

www.science.auckland.ac.nz/anthropological-science

Note: Anthropological Science cannot be taken as a major in a conjoint.

Biological Sciences

Biology is concerned with the study of life, including living organisms’ structure and functions, relationships, interactions and evolution. In this diverse major, your studies will include ecology, plant, animal and marine sciences, biotechnology and microbiology, evolution, genetics and biomedicine, conservation, biodiversity and biosecurity. All choices are supported by active research groups, and are fully equipped for modern biological and biomedical research.

In their first year, majoring students should include BIOSCI 101 Essential Biology: From Genomes to Organisms, and choose at least three of BIOSCI 100 Antarctica: The Frozen Continent, BIOSCI 102 Plants, Microbes and Society, BIOSCI 103 Comparative Animal Biology, BIOSCI 104 New Zealand Ecology and Conservation, BIOSCI 106 Foundations of Biochemistry, and BIOSCI 107 Biology for Biomedical Science: Cellular Processes and Development. CHEM 110 Chemistry of the Living World, CHEM 120 Chemistry of the Material World or CHEM 150 Concepts in Chemistry, and STATS 101 Introduction to Statistics are prerequisites for some courses.

A single or first major should include:

- 15 points: BIOSCI 101
- At least 45 points: BIOSCI 100, 102-107
- At least 30 points, including at least 15 points from each of two of the following groups: BIOSCI 201-203, BIOSCI 204, 205, 208, BIOSCI 206, 207, 210
- At least 60 points from BIOINF 301, BIOSCI 320-396

Note: Some courses are subject to grade requirements for entry.

www.science.auckland.ac.nz/courses-with-gpa-requirements
www.science.auckland.ac.nz/biological-sciences
Biomedical Science

This is a programme for very able students and is one of the two programmes from which students can be selected for Medicine (MBChB) at the end of their first year. First-year students must take the six core Stage I courses listed below and should also include POPHLTH 111 (Population Health) and a General Education course if they intend to apply for Medicine. Students who do not intend to apply for Medicine may choose any two additional courses from the BSc Schedule in their first year, but are encouraged to plan for their second year when making their choice. Biomedical Science is a highly prescriptive programme, so is only available as a single major and cannot be taken as part of a conjoint.

The first and second years provide core studies in cell biology, biophysics, genetics, physiology and biochemistry and an introduction to other biomedical disciplines.

In their third year, students may pursue suggested options in one of the following: cancer biology and therapeutics, cellular and molecular biomedicine, microbiology and immunology, cardiovascular biology, genetics and development, neurobiology, nutrition, and reproduction, growth and metabolism, or pursue courses of their own choosing within the prescribed schedule.

Up to 60 students will be selected for the fourth year honours programme based on their second and third-year grades.

Requirements for the major:
- 90 points: BIOSCI 101, 106, 107, CHEM 110, PHYSICS 160, MEDSCI 142
- 60 points: BIOSCI 201, 202, 203, MEDSCI 205
- At least 45 points: MEDSCI 201, 203, 204, 206, (BIOSCI 204 or MEDSCI 202), PSYCH 202
- At least 15 points: STATS 101, 108, BIOSCI 209
- At least 30 points: BIOSCI 347-358
- At least 30 points: MEDSCI 301-317
- At least 15 points at Stage III in BIOSCI, MEDSCI, CHEM 390, 392 or PSYCH 305
- At least a further 45 points from the Schedule for the Bachelor of Science

Note: Some courses are subject to grade requirements for entry.
www.science.auckland.ac.nz/courses-with-gpa-requirements
www.science.auckland.ac.nz/biomedical-science

Note: Biomedical Science is not available as a conjoint or double major.

Chemistry

Chemistry deals with molecular structures, chemical reactions and models that explain molecular behaviour. It underpins biology, geology, environmental science, medicine and engineering, leading to new substances, better processing reactions and greater understanding of materials, biological processing and the environment.

All core courses have a hands-on laboratory component, in which you’ll learn the key skills in analysis, synthesis and good laboratory practice that lead to advanced instrumentation and modelling. The study of Chemistry will develop your ability to think logically, analyse complex systems, communicate clearly and be creative, numerate and computer literate.

All Science majors can benefit from the addition of Chemistry to their programme. We recommend that first-year Science students take CHEM110 Chemistry of the Living World and CHEM 120 Chemistry of the Material World.

Courses in BIOSCI, COMPSCI, MATHS, PHYSICS or STATS are highly recommended. For students who lack the required background or wish to have a general introduction to Chemistry, CHEM 150 Concepts in Chemistry is recommended.

A single or first major should include:
- 45 points: CHEM 110, 120 and MATHS 110
- At least 45 points: CHEM 210-240
- 30 points from CHEM 310-340
- At least 30 points from CHEM 310-392

Note: Some courses are subject to grade requirements for entry.
www.science.auckland.ac.nz/courses-with-gpa-requirements
www.science.auckland.ac.nz/chemistry

Biotechnology

Biotechnology: in its broadest sense, is the commercial exploitation of living organisms or their components, such as proteins. Traditionally, these technologies have encompassed industrial microbiology and dealt with ancient processes such as brewing or the microbial production of cheese and yoghurt.

In the last few years, however, an avalanche of genetic and protein information has been discovered, with equally impressive advances in transgenic and animal cloning technologies. In this light, biotechnology has broadened its scope and is poised to make significant impacts on our health and nutrition, and how we interact with our environment.

Majoring students must include:

Year I
- 45 points: BIOSCI 101, BIOSCI 106, BIOSCI 107
- 15 points: Either CHEM 110 or CHEM 120

Year II
- 90 points: BIOSCI 201-204, SCIGEN 201, STATS 101, 108 or BIOSCI 209

Year III
- 60 points: BIOSCI 350, 351, 349 or 356, 353 or 354
- 30 points: INNOVENT 307, SCIENT 301
- 30 points from: BIOSCI 340, BIOSCI 347, BIOSCI 348, MEDSCI 314

www.science.auckland.ac.nz/biotechnology

Note: Biotechnology cannot be taken as a major in a conjoint.
Computer Science

This major will appeal if you are interested in gaining programming skills as the basis of understanding how computers and computer systems work. You can also learn how computers manage and process information, the limitations of computers and their applications in science and society. Students who intend to major in Computer Science must take COMPSCI 101 Principles of Programming and COMPSCI 105 Principles of Computer Science as these are prerequisites for Stage II and III courses.

Requirements for the major:
Core courses:
- COMPSCI 101
- COMPSCI 105
- Four courses (60 points) from COMPSCI 210–280
- Four courses (60 points) from COMPSCI 313–393

Recommended courses:
- COMPSCI 111
- MATHS 108 or MATHS 150
- PHIL 101

Note: Some courses are subject to grade requirements for entry.
www.science.auckland.ac.nz/courses-with-gpa-requirements
www.science.auckland.ac.nz/computer-science

Data Science

Data science is a rapidly growing field with an unmet demand for suitably qualified graduates. Big data is everywhere, but to extract information individuals require the ability to both manage and analyse the data. A Data Science major will provide initial preparation for students who would like to pursue a career in this area. It ties together courses from Computer Science, Statistics and Mathematics to provide the necessary background and training in these fields.

You’ll learn the essentials of data science through the study of data management, algorithmics and data analysis. You’ll learn how to process data and manage databases, bring together data from disparate sources; extract information and value from data, and conduct statistical and predictive modelling. This strong, coherent background will make you immediately employable as a graduate, or prepare you for progression to postgraduate study.

In your first year, you’ll complete the foundation courses in Statistics, Computer Science and Mathematics, with introductions to data analysis and probability, the principles of programming and data structures. The second year will introduce data technologies and algorithmics, as well as Statistics courses covering theory and applications. The final year covers statistical modelling, statistical computing, applied algorithmics, database systems and artificial intelligence. There will also be a capstone course (STATS 369) in the final semester, with case studies from business, industry and government.

In the 360 point major, you also have 105 points free to either deepen your knowledge of Statistics or Computer Science, or to broaden your knowledge in other areas.

A Data Science major must include:
- 75 points: STATS 101 or 108, STATS 125, COMPSCI 101 and 105, MATHS 108 or 150
- 90 points: STATS 201 or 208, STATS 210 or 225, STATS 220, COMPSCI 220 and 225, MATHS 208 or 250
- 45 points: STATS 330, 369, 380
- 45 points: COMPSCI 320, 351, 367

www.science.auckland.ac.nz/majorindatascience

Earth Sciences

This major explores the processes that have shaped the Earth, from its deepest interior to its surface, and into neighbouring space. It investigates the complexity and interactions of Earth’s systems, and addresses the impact of natural processes on society, and vice versa.

The programme has an emphasis on field skills through dedicated field courses.

Students who would like to major in Earth Sciences must include GEOG 101 Earth Surface Processes and Landforms and EARTHSCI 103 Dynamic Earth. We recommend that you take one approved course in Mathematics or Statistics and at least one additional approved course in Biological Sciences, Chemistry, Geography, Mathematics, Physics or Statistics. You should also take both of the 15 point first-year electives (listed below) in your first year, as these courses will give you additional skills to assist you with your Stage II and III courses.

Single or first major must include:
- 30 points: GEOG 101, EARTHSCI 103
- At least 15 points from: EARTHSCI 263, MATHS 108, 110, 150, 162, STATS 101, 108
- At least 15 points from: BIOSCI 101, 102, 104, 106, CHEM 110, 120, GEOG 210, MATHS 108, 110, 150, 162, STATS 101, 108, PHYSICS 120, 150, 162
- At least 15 points from: EARTHSCI 201, 260
- At least 45 points from EARTHSCI 201-204, 260-263
- At least 15 points from: EARTHSCI 301, 330, GEOG 330
- At least 45 points from EARTHSCI 303-305, 361, GEOG 331, 332, 351

www.science.auckland.ac.nz/earth-sciences
Courtney Dixon

Courtney is studying for a Bachelor of Science in Physics and Computer Science, and a Diploma in Languages specialising in Korean.

“I chose to study Science at the University of Auckland because it has a lot of courses in the majors I was interested in, and it offers the best programme for what I wanted to study.

“I chose Physics as my major because I was interested in physics in high school and I wanted to study it further. I took Computer Science for the first time as an elective and found I really enjoyed programming, so I decided to take it as my second major. My main areas of interest are quantum and astrophysics, and artificial intelligence.

“I like how there are a wide range of courses available in each subject, so you can study topics that you are really interested in. The quality of teaching is also really good with enthusiastic and helpful lecturers.

“I enjoyed the assignments in Computer Science where we coded our own applications, because it showed us we could apply the things we learnt in the course in real life.

“I hope to continue studying and take a postgraduate degree in Physics. After I graduate I’d like to go into some kind of scientific research.

“I like how my lecturers are really knowledgeable and passionate about their subject, which makes the course really interesting. The staff are also really friendly and helpful and there are plenty of places to go to get help or advice. The Faculty of Science offers lots of events where you can interact with different companies to get an idea of what fields you could work in.”
Ecology

Ecology is the study of the abundance of life and the interactions between organisms and their environment. It brings together Environmental Science, Biological Science, Marine Science, Geography and Statistics to focus on core ecology, environmental science and management, and modelling. It incorporates training in techniques and skills (computational/analytical/spatial/genetic), which are increasingly being used to solve ecological problems.

Majoring students should take BIOSCI 101 Essential Biology from Genomes to Organisms; BIOSCI 104 New Zealand Ecology and Conservation; ENVSCI 101 Environment, Science and Management; GEOG 101 Earth Surface Processes and Landforms; and STATS 101 Introduction to Statistics.

Other recommended courses are: BIOSCI 102 Plants, Microbes and Society; BIOSCI 103 Comparative Animal Biology; and GEOG 102 Geography of the Human Environment.

A single or first major should include:
Core courses:
- 75 points: BIOSCI 101, 104; ENVSCI 101, GEOG 101, STATS 101
- 45 points: BIOSCI 206, 209, ENVSCI 201
- At least 15 points from BIOSCI 330, 333, 394, 396
- 45 points from ANTHRO 349, BIOSCI 320–337, 347, 394–396, ENVSCI 301, GEOG 317–320, 330–332

Environmental Science

Environmental Science investigates links between the natural environment and people. It focuses on the environmental effects of human activity at global and local scale. It explores methods and techniques used to understand, manage and mitigate environmental problems, minimise human impact and restore degraded environments. Environmental Science is interdisciplinary.

The Environmental Science major is designed to be taken in conjunction with another Science major, such as Biological Sciences, Chemistry, Ecology, Geography, Earth Sciences, Statistics, Mathematics or Physics.

First-year students should include ENVSCI 101 Environment, Science and Management and STATS 101 Introduction to Statistics. Students should also consult listings for other majors for their remaining first-year choices.

The major should include:
- 75 points: ENVSCI 101, 201, 203, 301, 303
- 15 points from STATS 101, or an approved equivalent
- 15 points from another Stage III Bachelor of Science course
- The Environmental Science major must be taken in conjunction with another BSc major, including 60 points from Stage III courses in the other majoring subject
- Environmental Science is always the second major.

www.science.auckland.ac.nz/environmental-science
Exercise Sciences

Exercise scientists work with people to assess the physiological, psychological, biomechanical and neuromotor influences on human performance.

Facilities that support the departmental research programme, and that are available during your studies, include the Health and Performance Clinic, the Biomechanics laboratory and the Movement Neuroscience lab. In each, the emphasis is on enhancing performance in sport, work, and health contexts (including rehabilitation). Laboratory-based analysis of performance is an important part of the programme.

First-year majoring students must take EXERSCI 101 Foundations of Exercise Sciences and Sport, EXERSCI 103 Human Anatomy, BIOSCI 107 Biology for Biomedical Science: Cellular Processes and Development, MEDSCI 142 Biology for Biomedical Science: Organ Systems – plus either: PSYCH 108 Individual, Social and Applied Psychology or PSYCH 109 Mind, Brain and Behaviour. (One of these can also be taken as an elective if you are doing a second major). An additional 45 points from other courses are required. We strongly recommend EXERSCI 105 Exercise Prescription and STATS 101 or other courses from the Chemistry, Computer Science, Mathematics, Physics or General Education schedules.

A single or first major must include:

- 60 points: EXERSCI 101, 103, BIOSCI 107, MEDSCI 142
- 15 points from PSYCH 108, 109
- 75 points: EXERSCI 201-204, MEDSCI 205
- 60 points: EXERSCI 301, 303-305

Note: Some courses are subject to grade requirements.

www.science.auckland.ac.nz/courses-with-gpa-requirements
www.science.auckland.ac.nz/exercise-sciences

Food Science and Nutrition

This major offers distinct pathways in both Food Science and Nutrition.

The topics covered in the Food Science pathway underpin all aspects of manufacturing, processing and production in food-related industries – and include information regarding functional foods, nutrigenomics, emerging technologies, food safety and product development. Food Scientists typically find work in the food industry, research institutes and government departments. They focus on research, nutrition consulting, nutrition information services, health promotion, health programme planning and health policy, amongst other areas.

The Food Science pathway encompasses human nutrition, the maintenance of good health and the well-being of populations. This requires consideration of the environmental, social, economic and cultural determinants of eating behaviours and how they impact on health. The Nutrition pathway fulfils the undergraduate requirements for entry into the Master of Health Sciences in Nutrition and Dietetics, a specialised programme that will enable graduates to seek registration in order to practice as a Dietitian in New Zealand. Nutrition graduates generally find work in private practices, the food industry, research institutes and government departments. They focus on research, nutrition consulting, nutrition information services, health promotion, health programme planning and health policy, amongst other areas.

Food Science pathway

Students should enrol in BIOSCI 101, 106, 107, CHEM 110, 120, MATHS 108, 15 points from General Education, and 15 points from HLTHPSYC 122, MEDSCI 142, POPLHLTH 101, 102, or 111, plus 15 points of General Education.

Nutrition pathway

Students should enrol in BIOSCI 101, 106, 107, CHEM 110, ENGSCL 111 or MATHS 108, MEDSCI 142, POPLHLTH 111 and 15 points from HLTHPSYC 122, CHEM 120, POPLHLTH 101 or 102, PHYSICS 160, plus 15 points of General Education.

Note: Food Science and Nutrition is not available as a conjoint or double major.
Janel Tolentino

Janel is studying for a Bachelor of Science and Bachelor of Music conjoint degree, majoring in Exercise Sciences and Composition.

“Both of my older sisters studied at the University of Auckland, and they told about the wonderful learning environment, extracurricular activities, and the resources that the University offers. The University’s world rank status also drew me to study here.

“I decided to take a conjoint degree because I have an equal interest in both fields. I love the variety of topics covered, as my conjoint programme allows me to study two very different subjects.

“I’m lucky that my programme allows me to have a range of opportunities for the future. For Exercise Sciences, I would love to be able to work with everyday people or professional athletes, and help them to improve their performance. For Music, I would love to produce and write music professionally. I’m also interested in teaching either subject at secondary school – I’m keeping my options open!

“I have a University of Auckland Scholarship, which has helped me immensely. It has encouraged me to learn and perform to the best of my abilities in order to feel deserving of it, and it has taken some of the financial weight off my family’s shoulders.

“University has allowed me to mature – in terms of my learning and work ethic. I have been fortunate enough to be taught by lecturers that are passionate about what they are teaching, and tutors that genuinely care about helping students perform to the best of their abilities.”
Geography

Geographers ask questions about society and the environment. You can study coastal and river processes; landform development; biogeography; the importance of climate; predicting environmental hazards; how cities are shaped; how global issues affect local places; the social, environmental and economic factors that shape people and places; resource management; and geographical information science.

Fieldwork is a highly relevant and popular feature of the programme.

Majoring students should include GEOG 101 Earth Surface Processes and Landforms and GEOG 102 Geography of the Human Environment. Students should also consider GEOG 103 Mapping Our World, GEOG 104 Cities and Urbanism and STATS 101 Introduction to Statistics.

A single or first major must include:

- At least 45 points from GEOG 101, 102, 202, either 261 or 262
- 15 points: GEOG 250
- 15 points from GEOG 315, 330
- At least 45 further points from EARTHSCI 360, GEOG 302-362

www.science.auckland.ac.nz/geography

Geophysics

Geophysics is designed to prepare you for employment in areas that rely on a physics-based understanding of our physical environment.

These include basic and applied work in meteorology, oceanography, hydrology, exploration geophysics, natural hazards such as storms, floods, earthquakes and volcanoes, pollution monitoring, and other aspects of environmental physics.

Compulsory and optional courses in Earth Sciences, Mathematics and Physics provide the foundation for this major. Elective courses in subjects such as Chemistry, Computer Science, Environmental Science, Geography and Marine Science are taken where relevant to your specific interests in Geophysics.

Majoring students should take EARTHSCI 103 Dynamic Earth, EARTHSCI 104 Introduction to the Earth’s History, GEOG 101 Earth Surface Processes and Landforms, PHYSICS 120 Physics of Energy, PHYSICS 121 Advancing Physics 2, and MATHS 108 General Mathematics or MATHS 150 Advancing Mathematics 1.

A single or first major must include:

- 15 points: EARTHSCI 103
- 15 points: MATHS 253
- 30 points from GEOPHYSICS 213, PHYSICS 201
- 30 points from EARTHSCI 201, 204, MATHS 260, PHYSICS 203, 240
- 30 points from GEOPHY 330-361
- 30 further points from EARTHSCI 301-307, 372, GEOPHYS 330-361, MATHS 302-389, PHYSICS 315-391

www.science.auckland.ac.nz/geophysics
Information Systems

This major will appeal if you are interested in combining computing skills with current business practice. You will learn about the applications of technology and information management in the commercial sector.

Majoring students should take COMPSCI 101 Principles of Programming and COMPSCI 105 Principles of Computer Science, along with ACCTG 101 Accounting Information.

A single or first major must include:
- 15 points: ACCTG 101
- 60 points from COMPSCI 210-280
- 30 points: INFOSYS 220, 222
- 15 points: INFOSYS 322
- At least 30 points from COMPSCI 313-373
- At least 30 points from INFOSYS 320-341, 344

Stage I courses:
This major begins at Stage II, but students should take the following Stage I courses to gain entry into the necessary Stage II courses:
- COMPSCI 101 and COMPSCI 105
- MATHS 108 or MATHS 150 is also recommended

www.science.auckland.ac.nz/information-systems

Note: Information Systems cannot be taken as a major in a conjoint

Logic and Computation

If you’re interested in the theoretical and logical underpinnings of computing and computability, this major will appeal to you. Students who major in Logic and Computation are often creative thinkers with a talent for computation.

Requirements for the major:
- 45 points: COMPSCI 101 or 107, PHIL 101, 222
- 15 points: COMPSCI 255 or MATHS 255
- 60 points: COMPSCI 320, 350, 367, LINGUIST 300, 313, 320, LOGICOMP 300-302, MATHS 315, 326, 328, PHIL 305, 315, 323
- 15 points from COMPSCI 105, 220, 320, 350, 367, LINGUIST 100, 103, 200, 300, 313, 320, LOGICOMP 201, 300-302, MATHS 150, 250, 253, 255, 315, 326, 328, PHIL 105, 216, 222, 266, 305, 315, 323

Core course:
- COMPSCI 105

Recommended courses:
- MATHS 108
- MATHS 150
- COMPSCI 220

www.science.auckland.ac.nz/logic-and-computation

Marine Science

There are no prescribed courses in Stage I for Marine Science, but we recommend students take ENVSCI 101 Environment, Science and Management, STATS 101 Introduction to Statistics or STATS 108 Statistics for Commerce, SCIGEN 101 Communicating for a Knowledge Society, and a choice of CHEM 150 Concepts in Chemistry (for students with no chemistry background), CHEM 110 Chemistry of the Living World (organic for bio-oriented students) or CHEM 120 Chemistry of the Material World (inorganic).

A second major can be added alongside the Marine Science major, and is valuable because you’ll have a broad range of skills. Stage III courses in the second major must be independent of those taken for Marine Science.

The major must include:
- 30 points: MARINE 202, 302
- 15 points from STATS 201, BIOSCI 209, GEOG 250
- 45 further points from approved Stage III Bachelor of Science courses

www.science.auckland.ac.nz/marine-science
Morgan Meertens

Morgan is studying for a Bachelor of Science and Bachelor of Engineering conjoint, majoring in Mathematics and Engineering Science. She is in her final year.

“At high school I loved mathematics and because I was unsure of what pathway I wanted to follow, I decided to study a conjoint degree.

“Doing a conjoint gives me options to do what I enjoy in the future. Learning new topics and gaining new experiences opens you up to things that you may not have known existed. Now I have the option to choose what I enjoy.

“I really enjoyed my summer research project, which was about the effects of solar radiation on the Earth’s climate. It’s opened up possibilities for me, and now I would like to pursue a postgraduate degree in Science.

“I grew up and went to school in Rotorua. I was unsure where to go once high school finished, but I chose to study at the University of Auckland because someone from the University visited my high school to tell the students about study options. I also attended an orientation for Māori and Pacific students, which made choose the University of Auckland.

“When I began university I was very nervous and shy. At first I held back from going to Tuākana tutorials when I had questions, even though I am of Pacific descent and that is who Tuākana is for.

“A couple of years ago I was asked to become a tutor for Tuākana students. Being a tutor has helped me to grow and become more confident with other students, especially in Tuākana where everyone is so welcoming.

“Making friends who study the same thing as you has been great, as when you are stuck, you can turn to them because you know they will help.”
Mathematics

This major will appeal if you are interested in making a strong contribution to problem solving in science, medicine or commerce, as well as many areas of contemporary technology. It provides a range of concepts, theories, and analytical, computational and modelling tools. These can then be applied to areas such as biological sciences, information and physical sciences, economics, engineering and finance. Advanced courses will deepen your understanding and application of these techniques. The major may be taken as Mathematics or Applied Mathematics.

Students majoring in Mathematics are advised to take MATHS 150 Advancing Mathematics 1 and MATHS 250 Advancing Mathematics 2 in their first year of study.

See www.math.auckland.ac.nz/stage-1-courses to decide which of the following courses is right for you:

- MATHS 102 Functioning in Mathematics
- MATHS 108 General Mathematics 1
- MATHS 110 Mathematics for Science
- MATHS 150 Advancing Mathematics 1
- MATHS 153 Accelerated Mathematics
- MATHS 162 Computational Mathematics
- MATHS 190 Great Ideas Shaping Our World

See listings for other majors for remaining first-year choices.

Applied Mathematics

Applied Mathematics students are advised to take MATHS 150, MATHS 162 and MATHS 250 in their first year of study.

A single or first major must include:

- 45 points: MATHS 253, 260, 270
- 45 points: MATHS 340, 361, 363
- At least 15 points from MATHS 332, 333, 362, STATS 310, 325, 370, ENGSCI 343, 391 and any other courses approved by the Head of Department

www.science.auckland.ac.nz/applied-mathematics

Mathematics

A single or first major must include:

- At least 30 points from MATHS 253, 255, 260
- At least 30 points from MATHS 302-353
- A further 30 points from MATHS 302-363, STATS 310, 325, 370, ENGSCI 391, PHIL 305 and any other courses approved by the Head of Department

www.science.auckland.ac.nz/mathematics

Medicinal Chemistry

Medicinal Chemistry is one of the most rapidly developing areas within the discipline of chemistry, both globally and locally. It is the study of the design, biochemical effects, regulatory and ethical aspects of drugs for the treatment of disease. This major will equip you with a strong foundation in biological and chemical techniques that are relevant to the pharmaceutical world. The major provides in-depth coverage of the chemical techniques required, and relates these to the relevant areas within pharmacology, biochemistry and molecular biology. The aim of this major is to produce graduates with an appropriate background in biology and pharmacology, built on a strong chemistry foundation.

First-year majoring students must take the Biomedical Common Year or BIOSCI 101 Essential Biology: From Genomes to Organisms, BIOSCI 106 Foundations of Biochemistry, BIOSCI 107 Biology for Biomedical Science: Cellular Processes and Development, CHEM 110 Chemistry of the Living World, CHEM 120 Chemistry of the Material World, MEDSCI 142 Biology for Biomedical Science: Organ Systems, and 15 points from COMPSCI 111 An Introduction to Practical Computing, STATS 101 Introduction to Statistics, PHYSICS 120 Advancing Physics 1, PHYSICS 160 Physics of the Life Sciences, and 15 points from General Education.

All majors must include:

Year I

- 90 points: BIOSCI 101, 106, 107, CHEM 110, 120, MEDSCI 142
- At least 15 points from COMPSCI 111, STATS 101, PHYSICS 120, 160
- 30 points from General Education

Year II

- 90 points from BIOSCI 201, 203, CHEM 230, 240, MEDSCI 204, 205
- At least 15 points from BIOSCI 202, 204, CHEM 210, 220, 260, MEDSCI 202, 203

Year III

- 60 points from CHEM 330, 390, 392, MEDSCI 303
- At least 30 points from CHEM 320, 340, 350, BIOSCI 349, 350, 351, 353, 354, 356, MEDSCI 206, 305, 306

Note: Some courses are subject to grade requirements for entry.

www.science.auckland.ac.nz/courses-with-gpa-requirements

www.science.auckland.ac.nz/medicinal-chemistry

Not available as a conjoint or double major.
Pharmacology

Modern Pharmacology developed from the concept that particular chemicals are biologically active and can be used to modify, cure or prevent illness. In practice, this requires a detailed understanding of both how the body functions (physiologically and biochemically) and the problems that can occur (functional disturbances and pathology). By determining cellular and chemical abnormalities of the disease state, it is at least theoretically possible to design molecules to correct problems that arise. Toxicology is closely related to Pharmacology but focuses on the study of harmful effects of drugs and other chemicals on biological systems.

Students who would like to major in Pharmacology are strongly encouraged to take the Biomedical Common Year or BIOSCI 101 Essential Biology: From Genomes to Organisms, BIOSCI 106 Foundations of Biochemistry, BIOSCI 107 Biology for Biomedical Science: Cellular Processes and Development, CHEM 110 Chemistry of the Living World, and MEDSCI 142 Biology for Biomedical Science: Organ Systems. See listings for other majors for remaining first year choices.

Single or first major must include:
- At least 60 points from MEDSCI 303-307

Note: Some courses are subject to grade requirements for entry.
www.science.auckland.ac.nz/courses-with-gpa-requirements
www.science.auckland.ac.nz/pharmacology

Physics

Dynamic investigations into matter, concepts of energy and force, and the laws of nature give insights to the world around us and underpin discoveries in interesting areas such as acoustics, geophysics, astronomy, meteorology, biophysics, electronics, including medical imaging and devices, nuclear physics, lasers, fibre optics and telecommunications, and quantum physics. The training you’ll receive in experimental methods and mathematical analysis develops important workplace skills.

First-year majoring students should take PHYSICS 120 Advancing Physics 1, PHYSICS 121 Advancing Physics 2, MATHS 108 General Mathematics 1 or MATHS 150 Advanced Mathematics 1, COMPSCI 101 Principles of Programming or COMPSCI 111 Introduction to Practical Computing. You are also encouraged to select courses from PHYSICS 107 Planets, Stars and Galaxies, PHYSICS 140 Digital Fundamentals, PHYSICS 160 Physics for the Life Sciences. Your specific choices will depend on ability, prerequisites and interest. CHEM 110 and CHEM 120 are also recommended.

See the Physics website for further advice, and consult the listings for other majors for your other first-year choices.

A single or first major must include:
- At least 45 points from PHYSICS 315-371, GEOPHYS 330-361
- At least 15 points from PHYSICS 390, 391

www.science.auckland.ac.nz/physics
Physiology

Physiology explains how living organisms work. This knowledge helps us understand what goes wrong in disease and provides a rational scientific basis for for its treatment. Physiology is highly quantitative and has close links with biochemistry, molecular biology, mathematical modelling and pharmacology, as well as zoology and neuroscience.

Students wishing to major in Physiology need to take the following two prerequisite courses for our Stage II courses: BIOSCI 107 Biology for Biomedical Science: Cellular Processes and Development, and MEDSCI 142 Biology for Biomedical Science: Organ Systems.

In addition, students are strongly encouraged to take the following Stage I courses: the Biomedical Common Year Courses or BIOSCI 101 Essential Biology: From Genomes to Organisms. BIOSCI 106 Foundations of Biochemistry, CHEM 110 Chemistry of the Living World and/or CHEM 120 Chemistry of the Material World. This will ensure that students meet the requirements for Stage II and III courses. See listings for other majors for remaining first-year choices.

A single or first major must include:
- At least 60 points from MEDSCI 309, 311, 312, 316, 317

Note: Some courses are subject to grade requirements for entry.

www.science.auckland.ac.nz/courses-with-gpa-requirements
www.science.auckland.ac.nz/physiology

Psychology

Psychology is the study of human and animal behaviour. It is a science that investigates how organisms – primarily people – think, learn, perceive, feel, interact with one another, and understand themselves.

Valuable supporting subjects in the Faculty of Science include Biological Sciences, Computer Science, Physics, Physiology and Statistics. Supporting subjects available from other faculties include Anthropology, Education, Linguistics and Māori Studies.

First-year students wishing to major in Psychology must take PSYCH 108 Individual, Social and Applied Psychology, PSYCH 109 Mind, Brain and Behaviour and a Stage I Statistics course from STATS 101-125 or STATS 191, which must be taken before Stage III. Consult listings for other majors for remaining first-year choices.

Single or first major must include:
- At least 60 points from PSYCH 303-364, EXERSCI 304

Note: Some courses are subject to grade requirements for entry.

www.science.auckland.ac.nz/courses-with-gpa-requirements
www.science.auckland.ac.nz/psychology

Statistics

Statistics is the human side of the computer revolution, taking raw, undigested data, often in very large sets and making sense of it to solve problems and provide valid information in almost every walk of life. The fundamental ability to ask questions, design ways to collect and analyse data, and present the information in meaningful ways makes possible and enhances a wide range of activity from medical research to business profitability. All majors are made more effective – and graduates become more employable – by including these skills. First-year majoring students should take STATS 101 Introduction to Statistics or STATS 108 Statistics for Commerce, and STATS 125 Probability and its Applications, and consult listings for other majors for remaining first-year choices.

Single or first major must include:
- 15 points from STATS 125, 210
- At least 60 points from STATS 301-390, EXERSCI 304

Note: Some courses are subject to grade requirements for entry.

www.science.auckland.ac.nz/courses-with-gpa-requirements
www.science.auckland.ac.nz/statistics
Gina Holden

Gina is studying part-time for a Bachelor of Science, majoring in Computer Science.

"I can’t remember a time when I haven’t wanted to study at the University of Auckland. I’ve been coming along to Science open days since I was eight!

"I took a gap year after high school. Throughout that year I took an interest in programming, started playing about with free online courses, and gained a Level 4 Certificate in Computing. From the moment I ran my first program without it crashing, I knew it was something I wanted to pursue further.

"I like the hands-on approach – the assignments have been my favourite thing so far; they’re a chance to put into practise what we’ve learnt in lectures and labs."

"Right now I’m working on a program that works as a KPI Speedometer for work. It uses tkinter (a graphical user interface package that we learned about in COMPSCI 101) to ‘draw’ the images and bars, to show how an employee is tracking, and how this correlates to their potential bonus. I’m looking forward to using it at work soon.

"I’m aiming to get work as a programmer or software analyst; testing new programs for companies, as well as implementing and designing new ones.

"Ideally, I’d like to do a semester in either Japan or Germany, to experience another culture and gain some independence.

"I’ve made friends with people I’ve met at class tutorials, and through the Tuākana in Science programme. Everyone I’ve met there has been so helpful and friendly – I’m really lucky to have met them."
Other courses that can be included in a BSc

Anthropology
- ANTHRO 101, 102
- ANTHRO 200, 201, 205, 222, 228

For Anthropological Science major ONLY
- ANTHRO 200, 201, 205, 221, 235, 243, 245, 249

Civil and Environmental Engineering
- CIVIL 220, 221
- CIVIL 322, ENVENG 333

Information Systems
- INFOSYS 220, 222
- INFOSYS 320-330, 338-344

Linguistics
- LINGUIST 100, 101, 103
- LINGUIST 200, 201
- LINGUIST 300-301, 305

Pacific Studies
- PACIFIC 100

Philosophy
- PHIL 101, 102, 152
- PHIL 200, 210, 216, 222, 250, 260, 261, 263
- PHIL 305, 315, 351

Science General
- SCIGEN 101 Communicating for a Knowledge Society
- SCIGEN 201 Innovating for a Knowledge Society
- SCIGEN 301 Engaging in a Knowledge Society

Wine Science
- WINESCI 201 Introduction to Wine Science

These subjects are also available to students majoring in Mathematics and/or Statistics with a GPA of at least 5, and a B in Maths 150 or 153:

Economics
- ECON 201, 211, 221
- ECON 301, 311

Finance
- FINANCE 261
- FINANCE 361, 362

Study pathways

- **BSc** (3 years)
- **BSc conjoint** (4 years minimum)
- **GradDipSci** (1 year)
- **Postgraduate Diploma** (1 year)
- **BSc(Hons)** (1 year)
- **Masters** (1 year)
- **PhD** (3 years minimum)
Where can it take you?

Building a career involves knowing what your skills, values, knowledge and interests are and then identifying environments where these can be maximised. A Science degree can lead to an incredibly wide range of career opportunities. Our graduates begin their careers in research organisations, local and central government, education, commerce, industry, international and community organisations.

Our flexible degree structure means you don’t have to make career decisions early on. Being able to choose a total of eight first-year courses for up to three different majors enables you to try a variety of subjects and keep your options open for your second year of study.

You will also develop important transferable skills such as critical thinking, problem solving, analysis, written and oral communication, networking and time management. Science degrees offer skills and versatility, but good jobs are won on the basis of your personal management, achievements and attributes, as well as knowledge of your chosen major. Work with the Careers Consultants on campus right from the start of your degree to explore career options, build your personal profile and make sound career-oriented choices.

www.science.auckland.ac.nz/careers
<table>
<thead>
<tr>
<th>Theme</th>
<th>Possible major</th>
<th>Some examples of career opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences (plant/animal)</td>
<td>Anthropological Science, Biological Sciences, Chemistry, Pharmacology, Physiology, Statistics, Environmental Science, Marine Science, Biotechnology</td>
<td>Archaeological consultant, health and nutrition researcher, environmental or mining consultant, policy analyst, medical editor, biomedical researcher, ecologist, bioscientist, coastal planner, pest manager, zookeeper, marine biologist, wildlife manager</td>
</tr>
<tr>
<td>Environmental and Ecological Sciences</td>
<td>Biological Sciences, Geography, Earth Sciences, Statistics, Environmental Science, Marine Science, Physics, Chemistry, Ecology</td>
<td>Policy analyst, noise control officer, resource planner, ecologist, wildlife manager</td>
</tr>
<tr>
<td>Marine Science</td>
<td>Biological Sciences, Physics, Statistics, Geography, Earth Sciences, Chemistry, Marine Science</td>
<td>Environmental consultant, conservationist, planner, meteorologist, hydrologist, GIS consultant, resource manager</td>
</tr>
<tr>
<td>Earth Sciences/Environmental Science</td>
<td>Geography, Earth Sciences, Environmental Science, Geophysics, Marine Science, Biological Sciences, Physics, Statistics</td>
<td>Engineering geologist, geothermal consultant, volcanologist, meteorologist, resource or environmental manager, hydrogeologist, exploration geologist, geochemist, geophysicist, hazards scientist</td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>Chemistry, Computer Science, Environmental Science, Earth Sciences, Mathematics, Marine Science, Physics</td>
<td>Industrial designer, software engineer, network designer, electronic designer, traffic engineer, business analyst, data analyst, data scientist, database administrator, developer, information officer, insight manager, statistician</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>Chemistry, Computer Science, Data Science, Environmental Science, Geophysics, Geography, Mathematics, Marine Science, Physics</td>
<td>Health and safety professional, physiologist, biomedical researcher, healthcare professional, medical statistician, drug company representative, cancer researcher, drug developer, pharmaceutical researcher, technical writer</td>
</tr>
<tr>
<td>Biomedical Sciences</td>
<td>Biological Sciences, Biomedical Science, Chemistry, Medicinal Chemistry, Pharmacology, Physiology, Psychology, Statistics, Physics</td>
<td>Cardiac physiologist, clinical exercise physiologist, exercise scientist, human movement scientist, injury prevention consultant, respiratory physiologist, sport and fitness practitioner, sport scientist (consultant in biomechanics, exercise, nutrition, physiology)</td>
</tr>
<tr>
<td>Exercise Science</td>
<td>Exercise Science, Physiology, Psychology</td>
<td>Mental health counsellor, market researcher, salesperson, psychologist, prison counsellor, educator, human resources professional, policy analyst</td>
</tr>
<tr>
<td>Behavioural Sciences</td>
<td>Biological Sciences, Pharmacology, Physiology, Psychology, Statistics, Geography</td>
<td>Urban planner, policy analyst/manager, demographer, teacher, process designer, linguist, data analyst, data scientist, database administrator, developer, information officer, insight manager, statistician</td>
</tr>
<tr>
<td>Human Sciences</td>
<td>Data Science, Geography, Psychology, Statistics, Logic and Computation</td>
<td>Scientific officer in local/regional government or pharmaceuticals, industrial chemist, toxicologist, clinical researcher, animal psychologist, healthcare professional, researcher</td>
</tr>
<tr>
<td>Molecular Sciences</td>
<td>Biological Sciences, Chemistry, Pharmacology, Physiology, Environmental Science, Marine Science, Physics</td>
<td>Food product developer, food technologist, food analyst, food microbiologist, food quality assurer, food safety officer, packaging technologist, nutrition consultant, health promotion officer, health educator, clinical trials technician, nutrition researcher</td>
</tr>
<tr>
<td>Food Science and Nutrition</td>
<td>Food Science and Nutrition</td>
<td>Financial analyst, process controller, product analyst, banker, data analyst, data scientist, database administrator, developer, information officer, insight manager, statistician</td>
</tr>
<tr>
<td>Industrial Mathematics</td>
<td>Data Science, Logic and Computation, Applied Mathematics, Statistics</td>
<td>Systems analyst, software engineer, defence scientist, programmer, teacher, traffic engineer, merchant banker, business manager, GIS consultant, software developer, data analyst, network designer, software architect, data scientist, database administrator, information officer, insight manager, statistician</td>
</tr>
</tbody>
</table>
Alex Yang

Alex is studying for a Bachelor of Science majoring in Exercise Sciences and Physiology.

“I have always been passionate about sport, exercise and health which is why I decided to do Exercise Science and Physiology. I am very interested in learning the science behind athletic performances, and the relationship between exercise and adaptations to the human body.

“I chose to study at the University of Auckland because I wanted to be in a position where I had many study options available. The range of subjects allows you to explore and determine which field of study you would like to specialise in.

“I aspire to a career where I am able to interact with other individuals in a clinical setting. Becoming an exercise or cardiac physiologist really appeals to me. I believe that by choosing this undergraduate degree I will prepare myself for the many options within the medical and exercise science field of study which I am also very interested in.

“I feel like all the information I learn in my programme is applicable to everyday life. The topics connect well with other Science courses and the field is constantly evolving, which makes you eager to learn more.”
Science Scholars programme

The University of Auckland’s Science Scholars programme is for the best and brightest Science students from New Zealand and abroad. Selected students will have the opportunity to work closely with the University of Auckland’s leading scientists and teachers as they complete their degree, providing them with the skills needed to thrive in a career in science.

Entry to the Science Scholars programme is competitive, and participants will be selected according to both their potential for academic success and their engagement in activities outside the classroom.

The programme offers selected students:
- The opportunity to be involved in special research projects
- An academic mentor for the duration of their degree
- Academic counselling, including career counselling
- Personalised invitations to seminars
- The opportunity to meet distinguished visitors
- Enrichment activities that tap into the best research-informed teaching and learning methods

Students will also be part of a vibrant, scientifically focused community, with many chances to socialise as a cohort.

www.science.auckland.ac.nz/sciencescholars

Other opportunities to get involved

There are plenty of other ways in which you can get involved in faculty life and make the most of your time at university.

www.science.auckland.ac.nz/facultylife

Tuākana programme for Māori and Pacific students

Tuākana is a mentoring programme for first-year Māori and Pacific students, which started in the Faculty of Science, and has been operating across the University for 25 years.

Students who take part in the programme will have access to a network of departmental mentors who are available to offer tutorial support and course advice throughout the year. Mentors also run exam and study skills workshops to help first-year students achieve the best possible results.

www.science.auckland.ac.nz/tuakana
Entry requirements

To gain entry to a degree programme at the University of Auckland, you must meet admission, programme and undergraduate English language requirements. This table shows the rank score, subjects and other entry requirements that will guarantee you admission to your programme in 2018. If you achieve the University Entrance (UE) standard but do not achieve a rank score that will guarantee selection into the programme you wish to study, your application will be given individual consideration, provided places are available.

<table>
<thead>
<tr>
<th>Programme</th>
<th>NCEA (Level 3)</th>
<th>CIE (taken in NZ)</th>
<th>IB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Science (BSc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Biomedical Science</td>
<td>280</td>
<td>310</td>
<td>33</td>
</tr>
<tr>
<td>- Exercise Sciences</td>
<td>200</td>
<td>200</td>
<td>28</td>
</tr>
<tr>
<td>- Food Science and Nutrition</td>
<td>200</td>
<td>200</td>
<td>29</td>
</tr>
<tr>
<td>- all other majors/ specialisations</td>
<td>165</td>
<td>170</td>
<td>26</td>
</tr>
</tbody>
</table>

Conjoint programmes

Applicants must achieve the greater of the two rank scores for their selected programmes and must meet the entry requirements for both programmes. Not all degree programmes have conjoint options.

<table>
<thead>
<tr>
<th>Programme</th>
<th>NCEA (Level 3)</th>
<th>CIE (taken in NZ)</th>
<th>IB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Arts conjoints</td>
<td>210</td>
<td>230</td>
<td>28</td>
</tr>
<tr>
<td>Bachelor of Commerce conjoints</td>
<td>210 with a minimum of 16 credits in each of three subjects from Table A and/or Table B</td>
<td>230 with three subjects from Table A and/or Table B</td>
<td>28</td>
</tr>
<tr>
<td>Bachelor of Engineering (Honours) conjoints</td>
<td>275 with 17 external Level 3 credits in Calculus and 16 external Level 3 credits in Physics</td>
<td>330 with Mathematics and Physics at A Levels</td>
<td>36 with Mathematics and Physics at HL level</td>
</tr>
<tr>
<td>Bachelor of Fine Arts conjoints</td>
<td>210</td>
<td>230</td>
<td>28</td>
</tr>
<tr>
<td>Subject to the qualitative evaluation of a portfolio of 12 colour reproductions and a written statement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor of Health Sciences conjoints</td>
<td>250 with a minimum of 18 credits in one subject from Table A and a minimum of 18 credits in one subject from Table B</td>
<td>300 with one subject from Table A and one full A Level subject from Table B</td>
<td>33</td>
</tr>
<tr>
<td>Bachelor of Laws (Part I) conjoints</td>
<td>Satisfy the conjoint score for the other degree.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor of Music conjoints</td>
<td>Satisfy the conjoint score for the other degree.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject to the qualitative evaluation of a statement of musical background, referee’s report and:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Classical Performance – an audition and musical qualification certificates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Jazz Performance and Popular Music – an audition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Composition major – a portfolio of 2 composition works and musical qualification certificates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Musicology – musical qualification certificates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor of Nursing conjoints</td>
<td>230 with a minimum of 18 credits in one subject from Table A and a minimum 18 credits from one of Biology, Chemistry or Physics</td>
<td>280 with one subject from Table A and one of Biology, Chemistry or Physics at full A Level</td>
<td>31</td>
</tr>
<tr>
<td>Bachelor of Property conjoints</td>
<td>210 with a minimum of 16 credits in each of three subjects from Table A and/or Table B</td>
<td>230 with three subjects from Table A and/or Table B</td>
<td>28</td>
</tr>
<tr>
<td>Bachelor of Science conjoints</td>
<td>210</td>
<td>230</td>
<td>28</td>
</tr>
</tbody>
</table>

Applicants for the Bachelor of Medicine and Bachelor of Surgery (MBChB) must first complete Year 1 of either the BHSc or the BSc in Biomedical Science, or have completed another degree approved by the Faculty of Medical and Health Sciences.

Applicants for the Bachelor of Pharmacy (BPharm) must first complete an appropriate first-year programme including the prescribed BPharm Part I courses (or equivalent) or have completed another degree approved by the Faculty of Medical and Health Sciences.

Applicants for the Bachelor of Optometry (BOptom) must first complete the set courses from the common year of the BSc in Biomedical Science (or equivalent) or have completed another degree approved by the Faculty of Medical and Health Sciences.
Calculating your rank score

Find out how to calculate your rank score and what subjects you need in order to gain entry into your programme of choice, depending on whether you are sitting the National Certificate of Achievement (NCEA) or the University of Cambridge International Examinations (CIE) taken in New Zealand.

National Certificate of Achievement (NCEA)

How your rank score is calculated

You will be allocated a rank score based on your best 80 credits at Level 3 or higher over a maximum of five approved subjects, weighted by the level of achievement attained in each set of credits.

If you achieve fewer than 80 credits, the rank score will be based on those credits you have gained at Level 3 over a maximum of five approved subjects and weighted by the level of achievement.

- The rank score will be calculated by awarding the following points for up to 24 credits in each approved subject taken at Level 3. The maximum rank score is 320.

Excellence	4 points
Merit	3 points
Achieved	2 points

- Credits obtained in any required subjects do not have to be among the best 80 credits used for ranking purposes.
- NCEA Level 3 credits achieved in previous years may be counted towards the best 80 credits used for ranking purposes.
- Level 3 subject requirements for a specific programme may be met in Year 12.
- You are strongly encouraged to take achievement standards as preparation for University study.

For programmes that refer to Table A and/or Table B, use the table below.

<table>
<thead>
<tr>
<th>Table A</th>
<th>Table B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Studies</td>
<td>Accounting</td>
</tr>
<tr>
<td>English</td>
<td>Biology</td>
</tr>
<tr>
<td>Geography</td>
<td>Calculus</td>
</tr>
<tr>
<td>History</td>
<td>Chemistry</td>
</tr>
<tr>
<td>History of Art</td>
<td>Digital Technologies*</td>
</tr>
<tr>
<td>Te Reo Māori OR Te Reo Rangatira</td>
<td>Economics</td>
</tr>
<tr>
<td>**</td>
<td>Mathematics**</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
</tr>
</tbody>
</table>

*There are 11 level 3 achievement standards in this domain, numbered 91632–91642.
**Cannot be used in conjunction with Calculus and/or Statistics.

University of Cambridge International Examinations

How your rank score is calculated

You will be allocated a rank score using the UCAS Tariff for the best six subject units at AS or A level, provided that no more than two subject units are included from any one syllabus group in the table of available syllabus groups, which are broadly equivalent to those in the list of approved subjects for NCEA. (1 AS level = one subject unit; 1 A level = two subject units.) (Thinking Skills and the General Paper will be excluded.)

- The rank score will be calculated from your UCAS Tariff points by awarding the following points for each syllabus group (to a maximum of six subject units). The maximum rank score is 420.

<table>
<thead>
<tr>
<th>Level</th>
<th>A*</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>140 points</td>
<td>120 points</td>
<td>100 points</td>
<td>80 points</td>
<td>60 points</td>
<td>40 points</td>
</tr>
<tr>
<td>AS</td>
<td>60 points</td>
<td>50 points</td>
<td>40 points</td>
<td>30 points</td>
<td>20 points</td>
<td></td>
</tr>
</tbody>
</table>

- An A Level counts as two subject units. Where a student has studied more than six subject units, the best six scores will be used.
- A CIE rank score may differ from the UCAS Tariff used for University Entrance because only syllabuses that contribute to University Entrance are used for ranking. (Thinking Skills and the General Paper will be excluded.)

For programmes that refer to Table A and/or Table B, use the table below.

<table>
<thead>
<tr>
<th>Table A</th>
<th>Table B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Studies</td>
<td>Accounting</td>
</tr>
<tr>
<td>English</td>
<td>Biology</td>
</tr>
<tr>
<td>Geography</td>
<td>Business Studies</td>
</tr>
<tr>
<td>History</td>
<td>Chemistry</td>
</tr>
<tr>
<td>History of Art</td>
<td>Economics</td>
</tr>
<tr>
<td>**</td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
</tr>
</tbody>
</table>

Targeted admission schemes

The University has a range of admission schemes to improve access into higher education for equity groups. If you are a Māori or Pacific student, or a student with a disability, or from a refugee background or low socio-economic background, and have not met the guaranteed score, you may be eligible for inclusion in a targeted admission scheme.

www.auckland.ac.nz/utas

Academic English Language Requirement (AELR)

The University has an Academic English Language Requirement (AELR) for all its undergraduate programmes. The aim of the AELR is to ensure that you have sufficient competence in academic English to support your study at University. The AELR will not affect whether you are offered a place on a programme, and may be met through your entry qualification or through satisfactory completion of an approved course in your first year of study. Applicants who have not met the AELR through their entrance qualification will be provided with advice at the time of enrolment.

www.auckland.ac.nz/aelor
Dates to remember

Saturday 2 September 2017
Courses and Careers Open Day is all about discovering the qualifications that are right for you. You’ll learn what you need to get accepted into the University, what it’s like to be a student on campus, and where your study could lead you.
While you’re here, make the most of the opportunity to attend lectures, meet our staff and students, experience our social culture and explore the City Campus. Travel to and from the University on free buses within Auckland and further afield.
The full programme will be available online and from your school in July. In the meantime, you can visit www.openday.ac.nz

Orientation
Orientation takes place the week before lectures start each semester. Discover all you need to know about the facilities and support services available, and choose clubs to join so you can quickly feel at home at New Zealand’s leading university. Ask about UniGuides, who can personally introduce you to the University. Faculties and other groups usually hold their own orientation activities at the beginning of each semester too.

Semester Two 2017 Orientation welcome
General Orientation: Week beginning 17 July 2017
(Semester Two 2017 begins 24 July)

Semester One 2018 Orientation welcome
General Orientation: Week beginning 19 February 2018
(Semester One 2018 begins 26 February)

Closing dates for applications for admission to Science programmes in 2018

<table>
<thead>
<tr>
<th>Date</th>
<th>Closing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 December 2017</td>
<td>This is the deadline for new students to submit their Application for Admission if 2018 programme includes Summer School courses. Application for Admission also closes 1 December for all students applying to Exercise Sciences.</td>
</tr>
<tr>
<td>8 December 2017</td>
<td>This is the deadline for new students to submit their Application for Admission if their 2018 programme includes Semester One and Semester Two courses only. If you are a new student, only one Application for Admission is required. This form is due on either 1 December or 8 December, depending on whether you want to take Summer School courses as well. Applications received after these dates will be considered if places are available.</td>
</tr>
</tbody>
</table>

Academic year 2018

<table>
<thead>
<tr>
<th>Period</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer School – 2018</td>
<td>Lectures begin Thursday 4 January</td>
</tr>
<tr>
<td>Auckland Anniversary Day</td>
<td>Monday 29 January</td>
</tr>
<tr>
<td>Waitangi Day holiday</td>
<td>Tuesday 6 February</td>
</tr>
<tr>
<td>Lectures end</td>
<td>Friday 9 February</td>
</tr>
<tr>
<td>Study break/exams</td>
<td>Study Break: Saturday 10 February Exams: Monday 12 – Wednesday 14 February</td>
</tr>
<tr>
<td>Summer School ends</td>
<td>Wednesday 14 February</td>
</tr>
<tr>
<td>Semester One – 2018</td>
<td>Semester One begins Monday 26 February</td>
</tr>
<tr>
<td>Easter break</td>
<td>Monday 30 March – Tuesday 3 April</td>
</tr>
<tr>
<td>Mid-semester break</td>
<td>Wednesday 4 – Saturday 14 April</td>
</tr>
<tr>
<td>ANZAC Day Holiday</td>
<td>Wednesday 25 April</td>
</tr>
<tr>
<td>Graduation</td>
<td>Monday 7, Wednesday 9, Friday 11 May</td>
</tr>
<tr>
<td>Lectures end</td>
<td>Friday 1 June</td>
</tr>
<tr>
<td>Study break/exams</td>
<td>Study Break: Saturday 2 – Wednesday 6 June Exams: Thursday 7 – Monday 25 June</td>
</tr>
<tr>
<td>Queen’s Birthday</td>
<td>Monday 4 June</td>
</tr>
<tr>
<td>Semester One ends</td>
<td>Monday 25 June</td>
</tr>
<tr>
<td>Inter-semester break</td>
<td>Tuesday 26 June – Saturday 14 July</td>
</tr>
<tr>
<td>Semester Two – 2018</td>
<td>Semester Two begins Monday 16 July</td>
</tr>
<tr>
<td>Mid-semester break</td>
<td>Monday 27 August – Saturday 8 September</td>
</tr>
<tr>
<td>Graduation</td>
<td>Tuesday 25 September</td>
</tr>
<tr>
<td>Lectures end</td>
<td>Friday 19 October</td>
</tr>
<tr>
<td>Labour Day</td>
<td>Monday 22 October</td>
</tr>
<tr>
<td>Study break/exams</td>
<td>Study Break: Saturday 20 – Wednesday 24 October Exams: Thursday 25 October – Monday 12 November</td>
</tr>
<tr>
<td>Semester Two ends</td>
<td>Monday 12 November</td>
</tr>
<tr>
<td>Semester One – 2019</td>
<td>Semester One begins Monday 4 March</td>
</tr>
</tbody>
</table>

Disclaimer
Although every reasonable effort is made to ensure accuracy, the information in this document is provided as a general guide only for students and is subject to alteration. All students enrolling at the University of Auckland must consult its official document, the current Calendar of the University of Auckland, to ensure that they are aware of and comply with all regulations, requirements and policies.
How to apply

So, you’ve made your decision about what you want to study, and now it’s time to apply. What do you need to do? It’s a two-step process to apply for and enrol in your chosen programme.

First you need to apply

Complete the Application for Admission online. If you haven’t already, you’ll be asked to sign up for a new account. It’s easy, and soon your application will be underway.

www.apply.auckland.ac.nz

Next you’ll receive an acknowledgement email asking you to provide supporting documents (and in some cases to complete other requirements*) before your application can be assessed.

Remember, you can apply for more than one programme. We’ll be assessing your application, and you can check your application status online at any time.

Your final offer of a place depends on two things: your admission to the University (which for school leavers may depend on your final school results) and your assessment by the relevant faculty.

If your application is successful, we’ll email you an offer – normally from mid-January**. To accept or decline this offer, log onto www.apply.auckland.ac.nz.

Some late applications may be accepted after 2017 school results are available. It is advisable, however, to apply for all programmes that you might wish to pursue before the closing date. Multiple applications are acceptable, and all applications received by the closing date will be considered when 2017 academic results are available. Late applications will be considered if places are available.

Next you need to enrol

If you need some help with the enrolment process, take an online tutorial.

www.auckland.ac.nz/enrolment

To find out more about our subjects and courses, go to www.science.auckland.ac.nz/programmes.

You can also visit the Science Student Centre website www.science.auckland.ac.nz/student-centre

Check out Courses and Careers Open Day on Saturday 2 September 2017.

Next you need to make sure you pay your fees! You’ll find all the details at www.auckland.ac.nz/fees.

We recommend that you enrol in your courses as soon as you’ve accepted your offer of a place. Remember to build your timetable by selecting courses and placing these into your enrolment cart. Validate these to ensure you have no timetable clashes. If there is a timetable clash, select another time, or you may need to select another course. If everything is ok, enrol in your courses.

Stuck? At any point in the process you can find answers to your questions 24/7 at www.askauckland.ac.nz

Phone us during business hours on 0800 61 62 63 or email studentinfo@auckland.ac.nz

*For some programmes, you may be required to submit supplementary information (e.g. a portfolio of work, referee reports, an online form) or to attend an interview/audition.

**If you are not offered a place in the programme(s) of your choice, you will receive an email outlining alternative options.