Welcome to the Department of Computer Science

I am thrilled that you are contemplating postgraduate study in our department. Computer scientists are shaping the future of our society and you will have the skills to be part of that. We offer a wide range of options for postgraduate study, which will suit whatever pathway you are planning in your career.

By joining our successful department, you’ll discover the passion and excitement that drives us to stay at the forefront of research in the discipline. Industry, both internationally and here in New Zealand, values the depth of knowledge and research abilities that you will gain in postgraduate study at the University of Auckland. I look forward to seeing you progress, and watching as you shape our future.

Professor Robert Amor
Head of Department

Our subject is ranked in the top 100 worldwide

QS World University Rankings by subject 2017
Postgraduate study options in Computer Science

Postgraduate Certificate in Information Technology (PGCertInfoTech)

The Postgraduate Certificate in Information Technology (PGCertInfoTech) has been designed to allow students with undergraduate qualifications in areas other than IT to gain functional IT skills.

Graduates of the PGCertInfoTech can gain entry to related masters-level programmes or to entry-level workplace positions. Students will gain fundamental skills in software development, including object-oriented programming and design, web technologies and databases. It can be regarded as the preparatory step for a Master of Information Technology.

Prerequisite
Students must have completed the requirements for a suitable bachelors degree from the University of Auckland or an equivalent degree qualification, with a GPA of at least 4.0.

Structure
The Postgraduate Certificate in Information Technology is a 60-point taught programme. Students take highly practical, hands-on and lab-based courses that are exclusive to the programme.

Duration
Full-time programme taken over one semester. Late-year semester (November to February), Semester One and Semester Two. Part-time in Semester One and Two.

Contact
ict@auckland.ac.nz
Bachelor of Science (Honours) (BSc(Hons)) in Computer Science

BSc(Hons) is our premier degree for students who want to understand the frontiers of Computer Science. After graduating with your BSc(Hons), it is possible to progress to a masters degree (MSc); students gaining First or Second Class Division One honours may be eligible for direct entry to a doctorate (PhD).

Prerequisite
A Bachelor of Science with at least 90 points at Stage III or above. You will need a GPA of 5.0 or higher in 45 points at Stage III or above in your intended specialisation.

Structure
All honours students must complete at least 60 points from COMPSCI 701-717, 720-777 and BIOINF 702, and up to 30 points from 700-level courses in a related subject with approval of the Head of Department. Students must also complete a 30-point COMPSCI 789 dissertation.

Duration
One year full-time or two years part-time from initial enrolment

Contact
HonoursCoordinator@cs.auckland.ac.nz
Master of Science (MSc) in Computer Science

MSc is a one-year research programme by thesis only. This is our core programme designed to develop research skills in Computer Science.

Prerequisite
Applicants for the MSc programme must have completed a BSc(Hons) or a PGDipSci in Computer Science from the University of Auckland (or equivalent), with a GPA of at least 4.0 in 90 points.

Structure
Research. You will be directed and supported by an appointed supervisor while engaged in your independent research study. The results of the research you carry out over the period of registration will be submitted as a thesis.

Duration
One year full-time or two years part-time from initial enrolment

Contact
MScCoordinator@cs.auckland.ac.nz

Postgraduate Diploma in Science (PGDipSci) in Computer Science

PGDipSci develops cutting-edge skills in Computer Science. It is designed for students who have a BSc with a major in Computer Science. It can be regarded as the preparatory year for a masters degree in Computer Science.

Prerequisite
A completed BSc with a major in Computer Science

Structure
Students must complete at least 90 points from COMPSCI 601, 602, 691, 701-717, 720-780 and BIOINF 702. Up to 30 points from 700-level courses in a related subject may be chosen, with approval of the Head of Department.

Duration
One year full-time or up to four years part-time from initial enrolment

Contact
diploma@cs.auckland.ac.nz
Master of Professional Studies (MProfStuds)

The department offers two professional masters degrees: Data Science and Digital Security. These taught masters programmes have been designed in response to demand from industry.

Prerequisite

In order to be admitted to either of these programmes, a student needs to have completed:

Either

- The requirements for a four-year bachelors degree

Or

- The requirements for a bachelors (honours) degree

Or

- The requirements for a bachelors degree

And

- Have a GPA of at least 4.0 in 90 points (or equivalent) of the most advanced courses of the degree

And

- Either a professional qualification equivalent to one year’s advanced study or at least three years of professional experience in a field similar to your intended specialisation

And

- Any prerequisites for the courses in the specialisation in which they wish to enrol

Applicants who do not have the background to take the core 700-level Computer Science courses should first take some relevant Computer Science courses as part of a Certificate of Proficiency programme.
MProfStuds in Data Science

This programme will give graduates a unique combination of skills in data science and data management. These skills will enable them to comprehend, process and manage data efficiently, to extract value from data in order to visualise and communicate it effectively.

Structure

- At least 30 points from COMPSCI 751, 752, 753, 760
- At least 30 points from STATS 762, 769, 782, 784
- Up to 30 points from courses relevant to the area of study from SCIENT 701, 702, COMPSCI 705, 711, 720, 732, 734, INFOSYS 720, 722, 726, 727, 737, 740, OPSMGIT 760, 762, 764, STATS 707, 779, 783
- 30 points from COMPSCI 791 Dissertation

Applicants who do not have the background to take the core 700-level Statistics courses should also first take some relevant Statistics courses as part of a Certificate of Proficiency programme. For example, STATS 201 Data Analysis or STATS 207 Data-Centred Investigation and Analysis.

Duration

One year full-time or four years part-time from initial enrolment

Contact

mprofstuds@cs.auckland.ac.nz

MProfStuds in Digital Security

The Digital Security specialisation brings together courses from Computer Science, Information Systems and Operations Management. The programme addresses a need for professionals who are capable of implementing appropriate security strategies, who take into account law and business constraints, who understand and master tools for implementing security policies, and who are able to take containment actions during and after a breach has occurred.

Structure

- 60 points from COMPSCI 725, 726, 727, INFOSYS 727
- 30 points from COMPSCI 702, 705, 720, 732, 742, INFOSYS 720, 726, 730, 737, 750, 751
- 30 points from COMPSCI 791 Dissertation

Duration

One year full-time or four years part-time from initial enrolment

Contact

mprofstuds@cs.auckland.ac.nz
Master of Information Technology (MInfoTech)

The Master of Information Technology is a taught masters programme, with a 60-point industry internship. It is open to students with a background in an IT-related field. It can be taken full-time or part-time.

Prerequisites

180-point option
A relevant bachelors degree (or approved equivalent) with a GPA of at least 4.5 in 75 points at or above Stage III, including at least 45 points in an IT-related field; OR the Postgraduate Certificate in Information Technology (PGCertInfoTech) with a GPA of at least 4.5.

120-point, ‘fast track’ option
A relevant bachelors (honours) degree (or approved equivalent) with a GPA of at least 4.5 in 75 points above Stage III, including at least 45 points at 700-level in an IT-related field.

Structure

The Master of Information Technology is a taught masters programme, with a 60-point industry internship.

Duration

One year full-time or two years part-time from initial enrolment

Contact

ict@auckland.ac.nz

Doctor of Philosophy (PhD)

The Computer Science doctoral programme is a research degree that enables exceptional students to become experts in their areas of interest through original and creative research. The degree prepares students for careers at the forefront of academia, government and industry. It is the highest level qualification that can be awarded by the University of Auckland, and as such the application process is rigorous.

Prerequisite

Ideally, candidates will have completed a masters degree to a high standard or a first class honours degree, and demonstrate an ability to produce doctoral-level research. Other high-level degrees may also be acceptable.

Structure

Research. You will be directed and supported by an appointed supervisor while engaged in your independent research study. The results of the research you carry out over the period of registration will be submitted as a thesis.

Duration

Three to four years full-time or six to eight years part-time.

Contact

phdcoordinator@cs.auckland.ac.nz

For more information, go to www.science.auckland.ac.nz/phd
<table>
<thead>
<tr>
<th>Course code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 702</td>
<td>Security for Smart-devices</td>
</tr>
<tr>
<td>COMPSCI 705</td>
<td>Advanced Topics in Human Computer Interaction</td>
</tr>
<tr>
<td>COMPSCI 711</td>
<td>Parallel and Distributed Computing</td>
</tr>
<tr>
<td>COMPSCI 715</td>
<td>Advanced Computer Graphics</td>
</tr>
<tr>
<td>COMPSCI 720</td>
<td>Advanced Design and Analysis of Algorithms</td>
</tr>
<tr>
<td>COMPSCI 725</td>
<td>System Security</td>
</tr>
<tr>
<td>COMPSCI 726</td>
<td>Network Defence and Countermeasures</td>
</tr>
<tr>
<td>COMPSCI 727</td>
<td>Cryptographic Management</td>
</tr>
<tr>
<td>COMPSCI 732</td>
<td>Software Tools and Techniques</td>
</tr>
<tr>
<td>COMPSCI 734</td>
<td>Web, Mobile and Enterprise Computing</td>
</tr>
<tr>
<td>COMPSCI 742</td>
<td>Advanced Internet: Global Data Communications</td>
</tr>
<tr>
<td>COMPSCI 747</td>
<td>Computing Education</td>
</tr>
<tr>
<td>COMPSCI 750</td>
<td>Computational Complexity</td>
</tr>
<tr>
<td>COMPSCI 751</td>
<td>Advanced Topics in Database Systems</td>
</tr>
<tr>
<td>COMPSCI 752</td>
<td>Web Data Management</td>
</tr>
<tr>
<td>COMPSCI 753</td>
<td>Uncertainty in Data</td>
</tr>
<tr>
<td>COMPSCI 760</td>
<td>Data-mining and Machine Learning</td>
</tr>
<tr>
<td>COMPSCI 761</td>
<td>Advanced Topics in Artificial Intelligence</td>
</tr>
<tr>
<td>COMPSCI 765</td>
<td>Interactive Cognitive Systems</td>
</tr>
<tr>
<td>COMPSCI 767</td>
<td>Intelligent Software Agents</td>
</tr>
<tr>
<td>COMPSCI 771</td>
<td>Advanced Topics in Computer Graphics and Image Processing</td>
</tr>
<tr>
<td>COMPSCI 773</td>
<td>Intelligent Vision Systems</td>
</tr>
<tr>
<td>BIOINF 702</td>
<td>Comparative Bioinformatics</td>
</tr>
<tr>
<td>BIOINF 703</td>
<td>Genome Bioinformatics and Systems Biology</td>
</tr>
<tr>
<td>BIOINF 704</td>
<td>Statistical Bioinformatics</td>
</tr>
</tbody>
</table>
Careers in Computer Science

Recent developments in digital technology have meant that computers are not only a tool for corporate businesses, but are now used extensively across a range of other industries including manufacturing, transport, communication, healthcare and entertainment. With the internet changing the way we communicate and the way in which we do business, there is also an increasing need for companies to hire professional staff with computer expertise to develop and maintain their systems.

<table>
<thead>
<tr>
<th>Academia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business analyst</td>
</tr>
<tr>
<td>Computer consultant</td>
</tr>
<tr>
<td>Database/systems administrator</td>
</tr>
<tr>
<td>E-Commerce solutions architect</td>
</tr>
<tr>
<td>Educational software developer</td>
</tr>
<tr>
<td>Game developer</td>
</tr>
<tr>
<td>Geographic information systems (GIS) analyst</td>
</tr>
<tr>
<td>Information and communication technology manager</td>
</tr>
<tr>
<td>Information systems manager</td>
</tr>
<tr>
<td>Multimedia programmer</td>
</tr>
<tr>
<td>Network engineer</td>
</tr>
<tr>
<td>Programmer</td>
</tr>
<tr>
<td>Project manager</td>
</tr>
<tr>
<td>Robotics engineer</td>
</tr>
<tr>
<td>Software architect</td>
</tr>
<tr>
<td>Software engineer</td>
</tr>
<tr>
<td>Systems analyst</td>
</tr>
<tr>
<td>Systems developer</td>
</tr>
<tr>
<td>Telecommunications engineer</td>
</tr>
<tr>
<td>Test analyst</td>
</tr>
<tr>
<td>UX developer</td>
</tr>
<tr>
<td>Web developer</td>
</tr>
</tbody>
</table>
“I completed a research project in the course COMPSCI 747 (Computing Education) called ‘Computing for social good’. The topic itself was very interesting and my lecturer was an expert in the field of computer science education.

“All these facts combined made me want to continue onto masters with the same research topic. My masters thesis is entitled ‘Making computer science more socially relevant’.

“Computing education discusses various aspects of how to teach computer science in a more effective manner. One of the angles that I’m looking at is the lack of gender diversity within the field, and how to attract more females.

“With the substantial growth and usage of technology, it seems only appropriate that females should actively be a part of the creation process as well. My proposed idea is that if computer science can be illustrated as a more socially relevant discipline, with application to the real world and other subjects, it may attract and retain more females.

“When I finish my masters I hope to get a good job and build my career. I’ve found the University’s Career Development and Employability Service (CDES) and Libraries and Learning Services to be very helpful and motivating.

“Academic writing and preparing for the work industry is much easier when such effective guidance is provided for students.

“During postgrad study, I feel like there are so many great opportunities to nurture lifelong friendships with lecturers, tutors and supervisors. We can connect on a whole new level, instead of just a teacher-student type of relationship. This allows us to expand our learning and be aware of the ongoing advancements within our field. Being part of the Human Computer Interaction research group was a complete treat, as it provided continuous support and feedback.”

Nazish Zaman Khan is studying for a Master of Science specialising in Computer Science.
Use of a high speed camera allows me to record the extremely quick events, and enables me to study the effect of micron scale surface patterns on the spread of water droplets as they impact.

“The programme is very diverse in skills and topics. Fluid mechanics, soft lithography, computer coding, image analysis, high speed photography and experimental setup. It is a good chance to broaden my skills into areas I have not previously worked in.

Matheu Broom is studying toward a PhD in Physics having completed a Master of Physics (Honours).