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Overview 

This technical report describes results from a series of models we have developed to 

estimate the statistical power of latent growth parameters in the NZAVS using Monte Carlo 

simulation. The models are tailored specifically for the NZAVS, and the simulated data 

approximate the actual NZAVS data structure. Specifically, our simulations approximate the 

NZAVS datasets in terms of sample size for previous waves (Waves 1-5), projected sample 

size for future waves (Waves 6-10), and the structure of missing data introduced by both 

sample attrition and booster sampling occurring at various points during the first five years of 

the study.  

Sample size in these models is thus known, or can be predicted with reasonable 

accuracy, as can missing data (with some exceptions). These parameters are thus held 
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constant in our models. This allows us to estimate the statistical power that the NZAVS can 

be expected to achieve under the following conditions: 

(a) Depending on the effect size for the latent growth parameter of interest,  

(b) given other reasonable default parameter settings in latent growth models of 

NZAVS data,  

(c) the complexity of the latent growth model (e.g., number of time-invariant 

covariates, estimation of second-order polynomial curves, etc), and  

(d) depending on whether the model is tested using the currently available (as of 

2014) first five waves of the NZAVS, or whether one waits for a given number of 

subsequent waves of data to be collected.  

It is this last parameter (d) that is of critical interest to us, because holding other 

parameters constant, our simulations can thus provide projections about how many waves of 

data are needed to test latent growth curve models of varying complexity and still achieve 

power of .80 (a typical default for acceptable power) to detect the parameter of interest given 

the expected size of that parameter.  

 

Power Estimation Using Monte Carlo Simulation in Mplus: A Brief Overview 

We adapted the procedures outlined by Muthén and Muthén (2002) to estimate 

statistical power. Muthén and Muthén (2002, p. 8) provide the following summary of power 

estimation in Mplus, and we repeat it here: 

Power is evaluated using the information in the column “labelled % Sig Coeff. This 

column gives the proportion of replications for which the null hypothesis that a parameter is 

equal to zero is rejected for each parameter at the .05 level (two-tailed test with a critical 

value of 1.96). The statistical test is the ratio of the parameter estimate to its standard error, 

an approximately normally distributed quantity (z-score) in large samples. For parameters 



with population values different from zero, this value is an estimate of power, that is, the 

probability of rejecting the null hypothesis when it is false. For parameters with population 

values equal to zero, this value is an estimate of Type I error, that is, the probability of 

rejecting the null hypothesis when it is true.” 

We followed the general recommendations outlined by Muthén and Muthén (2002) 

for determining adequate models when estimating desired sample size. Muthén and Muthén 

(2002, p. 8) summarized these as follows, and we apply them to our estimates of power when 

varying different model parameters (rather than to estimate sample size): “The first criterion 

is that parameter and standard error biases do not exceed 10 percent for any parameter in the 

model. The second criterion is that the standard error bias for the parameter for which power 

is being assessed does not exceed 5 percent. The third criterion is that coverage remains 

between 0.91 and 0.98.” 

 

Known and Projected NZAVS Data Characteristics 

 

 Because the first 5 waves of the NZAVS have been collected, we know quite a lot 

already about the structure of the data and thus aimed to approximate the actual NZAVS data 

structure in our models. As of the end of Wave 5, the NZAVS contains ~23,000 unique 

participants. There are currently about 3500 ‘loyal stayers’ in the NZAVS, that is, people 

who have participated since Wave 1, and have completed all of the first 5 Waves. Many more 

people have completed at least 4 of the first 5 waves.  

In 2009, at Wave I, the NZAVS randomly sampled a total of 6,518 registered voters 

from the New Zealand electoral roll. 

In 2010, the NZAVS sampled 4,423 people retained from Wave I (retention rate 

from Wave I = 68%). 



In 2011, the NZAVS sampled 6,884 New Zealanders, with 3,916 people retained 

from Wave I and a booster sample of 2,961 new participants (retention rate from Wave I = 

60%, wave-to-wave retention from previous year = 80%). 

In 2012, the NZAVS sampled 12,182 New Zealanders, with 4,054 people retained 

from Wave I and a booster sample of 5,377 new participants (retention rate from Wave I = 

62%, wave-to-wave retention from previous year = 84%). 

In 2013, the NZAVS sampled 18,211 New Zealanders, with 3,941 people retained 

from Wave I and a booster sample of 7,639 new participants (retention rate from Wave I = 

61%, wave-to-wave retention from previous year = 81%). 

 Sibley (2014, NZAVS Tech Docs, e18) derived Eq 1.0 predicting sample retention 

from Wave 6 onwards: 

yw = 22764e-0.223w           (Eq. 1.0) 

This simple model summarizes a rate of decay in the number of people sampled 

holding constant a wave-by-wave retention rate of 80%, where: y = the predicted number of 

people retained in the NZAVS at a given wave (w). For simplicity, Wave 1 in this model 

represents Time 5 as this was the current wave of the sample from which this model was 

derived. So setting w = 2 estimates the projected number of people who should complete 

Wave 6 (or the 2014 phase), w = 3 estimates the projected number of people who should 

complete Wave 7 (or the 2015 phase), and so forth. Sample projections are thus as follows: 

  



Table 1. Projected sample sizes (from Sibley, 2014).  

wave year w 
sample 
projection 

Wave 5 2013 1 18214 

Wave 6 2014 2 14573 

Wave 7 2015 3 11660 

Wave 8 2016 4 9329 

Wave 9 2017 5 7465 

Wave 10 2018 6 5973 

 

 

Data Simulation 

 All models were estimated using Mplus 7.3. Given the known and projected sample 

details outlined above, we generated simulation data with the following parameters: 

 N = 23,000 

 Variables are normally distributed.  

 No missing data for 13% of cases. This ensures that the minimum possible number of 

loyal stayers is 3000. This is a clear underestimate for models only using data from 

Wave 1 – 5. Given random data generated for the remaining 87% of the sample, 

simulation data for Wave 1 – 5 tended to give a number of loyal stayers of ~3400-

3500. Setting this value of 3000 also allows for a decrease in loyal stayers in 

subsequent waves.  

 Data were generated with Missing at Random (MAR) for the remaining 87% of the 

total N. To allow for variation in sample size across time, we specified specific 

estimates of the proportion of missing data in this 87% at each wave. Note that this 

did not simply apply the decay function equation outlined in Eq. 1 because the data 

include independent booster samples conducted during Waves 3, 4 and 5.  



 Table 2 presents the proportions of data missing completely at random that was 

specified for each wave for the 87% for which missing data were allowed, and the 

13% which (by definition) did not have missing data. For example, at Wave 1, we 

calculated the proportion of missing data for the 87% for which missing data were 

allowed using Eq. 2.0: 

1 – (Wave N – Loyal Stayer N) / Grand N, or    (Eq. 2.0) 

1 – (6518 – 3000) / 23000 

 For Wave 1 – 5, Wave N was a known value. For Waves 6 -10, Wave N was an 

estimate derived from Eq 1.0 



Table 2. Proportions of missing data estimated for each wave (T1 – T5 based on known values, T6-10 based on sample projections).  

 

Grand N 23000.000 
         Loyal Stayers 3000.000 
         Prop Loyal Stayers  0.130 
         

 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Wave N 6518.000 4442.000 6884.000 12182.000 18211.000 14573.000 11660.000 9329.000 7465.000 5973.000 

Wave N / Grand N 0.283 0.193 0.299 0.530 0.792 0.634 0.507 0.406 0.325 0.260 

           Wave N - Loyal Stayers N 0.153 0.063 0.169 0.399 0.661 0.503 0.377 0.275 0.194 0.129 

Prop Loyal Stayers  0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 

           Prop Missing from Grand N  (varying 
component) 0.847 0.937 0.831 0.601 0.339 0.497 0.623 0.725 0.806 0.871 
Prop Missing from Grand N  (loyal 
stayer component) 

0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 

 



 

 It is important to note that we simulated data as Missing at Random (MAR). While 

this mimics the obtained and projected sample sizes for each wave, our simulation did 

not include specific decay functions for the booster samples collected during Waves 3 

-5.  

 The NZAVS and simulated data have a comparable number of people who completed 

only one wave to those in the simulated data. However, in the NZAVS, these people 

completed only the wave in which they were initially booster sampled (and are thus 

most likely to be in Waves 1 or 5). In the simulated data, they are distributed across 

all waves. We thus tend to as a consequence under-estimate the N for unique cases in 

Wave 5 specifically.  

 

The Mplus syntax for estimating missing data patterns in our simulations for the first 10 

waves of the NZAVS was thus: 

 

PATMISS = y1(.847) y2(.937) y3(.831) y4(.601) y5(.339) y6(.497) y7(.623) y8(.725) y9(.806) y10(.871)  

                 | y1(0) y2(0) y3(0) y4(0) y5(0) y6(0) y7(0) y8(0 y9(0) y10(0); 

PATPROB = .870|.130; 

 

Where for PATMISS, y1 – y10 represent Waves 1 – 10 of the study, and the values in 

parentheses represent the proportion of missing data. 

PATPROB then extends this to specify that the first section of proportions should be 

estimated for 87% of simulated cases and the latter section of proportions (those with no 

missing values) should be simulated for 13% of cases.  

 



Note that when estimating less than 10 waves of data, for e.g., 6 waves, the only the 

proportions for y1 – y6 would be included.  

 

Table 3. Summary of missing data patterns for a simulated run using Waves 1 – 5 and 

without covariates (x = non-missing data).  
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Model Specification: Overview 

We specified a series of Latent Growth models of varying complexity and estimated 

the statistical power achieved by each model when varying the size of key parameters of 

interest when analysed using the first 5 waves, first 6 waves, and so on up to Wave 10.  

All models were estimated using 100,000 replications and assuming normally 

distributed continuous indicators. Missing data were generated using MAR (as outlined in the 

section on missing data estimation above). We used Maximum Likelihood estimation. Latent 

Growth Models were estimated assuming a time-invariant and equally dispersed series. The 

means of indicators in our latent growth model were set at 0, with variances = .50. The 

intercept of the latent growth models was fixed at 4.0 with variance = 1.0. These default 

values were chosen because they generally approximate those observed in previous LGMs 

using NZAVS data. Syntax for a sample example of each model simulating 10 waves of data 

collection for each model type is included in the Appendix. 

 

The models we estimated were: 

 Model 1: LGM without covariates, varying the random effect of slope. 

 Model 2: LGM without covariates, varying the mean of slope. 

 Model 3: LGM with time-invariant covariate, varying the conditional effect of 

covariate on slope. 

 Model 4: LGM with six time-invariant covariates, varying the conditional 

effect of focal covariate on slope. 

 Model 5: LGM with second-order polynomial, varying the random effect of 

the quadratic component of the slope. 

 Model 6: LGM with second-order polynomial, varying the mean of the 

quadratic component of the slope. 



 Model 7: LGM with six covariates, varying the conditional effect of focal 

covariate on quadratic component of slope. 

 Model 8: LGM where the effect of time-invariant covariate on the slope is 

moderated by the intercept of the growth factor.  

 Model 9: Parallel process LGM, varying the regression of the intercept from 

one growth factor on the slope of the second growth factor.  

 

  



Model 1: LGM without covariates, varying the random effect of slope 

 

 

 

Figure 1. Example of Model 1 Simulating Waves 1 – 10.  

 

 

Summary of model parameters 

 Equally dispersed fixed periods between each wave (0,1,2, etc) 

 Models ranged from those simulating Waves 1-5 up to Waves 1-10 

 Mean of y indicators set to 0, residual variance of y indicators set to .50 

 Intercept mean set to 4, variance set to 1 

 Slope mean set to 0, variance ranged from .001 to .015 

 Covariance of slope and intercept set to 0 

(Refer to Appendix for Syntax) 

 

 

 

 

 



 

 

 Figure 3. Power estimates for Model 1.  

  



 

Table 5. Tabulated power estimates for Model 1.  

Effect 
Size Waves 1-5 Waves 1-6 Waves 1-7 Waves 1-8 Waves 1-9 Waves 1-10 

.0010 0.104 0.239 0.522 0.846 0.988 1.000 

.0015 0.172 0.466 0.848 0.992 1.000 1.000 

.0020 0.270 0.697 0.976 1.000 1.000 1.000 

.0025 0.394 0.868 0.998 1.000 1.000 1.000 

.0030 0.526 0.956 1.000 1.000 1.000 1.000 

.0035 0.647 0.989 1.000 1.000 1.000 1.000 

.0040 0.756 0.998 1.000 1.000 1.000 1.000 

.0045 0.843 1.000 1.000 1.000 1.000 1.000 

.0050 0.909 1.000 1.000 1.000 1.000 1.000 

.0055 0.949 1.000 1.000 1.000 1.000 1.000 

.0060 0.975 1.000 1.000 1.000 1.000 1.000 

.0065 0.987 1.000 1.000 1.000 1.000 1.000 

.0070 0.994 1.000 1.000 1.000 1.000 1.000 

.0075 0.997 1.000 1.000 1.000 1.000 1.000 

.0080 0.999 1.000 1.000 1.000 1.000 1.000 

.0085 1.000 1.000 1.000 1.000 1.000 1.000 

.0090 1.000 1.000 1.000 1.000 1.000 1.000 

.0095 1.000 1.000 1.000 1.000 1.000 1.000 

.0100 1.000 1.000 1.000 1.000 1.000 1.000 

.0105 1.000 1.000 1.000 1.000 1.000 1.000 

.0120 1.000 1.000 1.000 1.000 1.000 1.000 

.0125 1.000 1.000 1.000 1.000 1.000 1.000 

.0130 1.000 1.000 1.000 1.000 1.000 1.000 

.0135 1.000 1.000 1.000 1.000 1.000 1.000 

.0140 1.000 1.000 1.000 1.000 1.000 1.000 

.0145 1.000 1.000 1.000 1.000 1.000 1.000 

.0150 1.000 1.000 1.000 1.000 1.000 1.000 

       

 

  



Model 2: LGM without covariates, varying the mean of slope 

 

 

Figure 4. Example Model 2 Simulating Waves 1 – 10.  

 

Summary of model parameters 

 Equally dispersed fixed periods between each wave (0,1,2, etc) 

 Models ranged from those simulating Waves 1-5 up to Waves 1-10 

 Mean of y indicators set to 0, residual variance of y indicators set to .50 

 Intercept mean set to 4, intercept variance set to 1 

 Slope mean set to 0, slope variance ranged from .001 to .015 

 Covariance of slope and intercept set to 0 

(Refer to Appendix for Syntax) 

 



 

Figure 5. Power estimates for Model 2.  

 

Table 6. Tabulated power estimates for Model 2.  

Effect 
Size Waves 1-5 Waves 1-6 Waves 1-7 Waves 1-8 Waves 1-9 Waves 1-10 

0.001 0.069 0.076 0.087 0.102 0.116 0.127 

0.002 0.117 0.155 0.195 0.253 0.312 0.367 

0.003 0.204 0.292 0.389 0.496 0.587 0.678 

0.004 0.320 0.459 0.612 0.736 0.828 0.892 

0.005 0.457 0.639 0.798 0.899 0.954 0.976 

0.006 0.601 0.789 0.911 0.973 0.992 0.997 

0.007 0.735 0.899 0.974 0.995 0.999 1.000 

0.008 0.841 0.961 0.994 1.000 1.000 1.000 

0.009 0.912 0.987 0.999 1.000 1.000 1.000 

0.010 0.956 0.997 1.000 1.000 1.000 1.000 

0.011 0.982 0.999 1.000 1.000 1.000 1.000 

0.012 0.993 1.000 1.000 1.000 1.000 1.000 

0.013 0.997 1.000 1.000 1.000 1.000 1.000 

0.014 0.999 1.000 1.000 1.000 1.000 1.000 

0.015 1.000 1.000 1.000 1.000 1.000 1.000 

 

  



Model 3: Model 3: LGM with time-invariant covariate, varying the conditional effect of 

covariate on slope 

 

 

Figure 6. Example Model 3 Simulating Waves 1 – 10.  

 

Summary of model parameters 

 Equally dispersed fixed periods between each wave (0,1,2, etc) 

 Models ranged from those simulating Waves 1-5 up to Waves 1-10 

 Mean of y indicators set to 0, residual variance of y indicators set to .50 

 Means of x1 covariate set to 0, variance of x indicators set to 1. 

 Intercept mean set to 4, intercept variance set to 1 

 Slope mean set to .01, slope variance set to .01 

 Covariance of slope and intercept set to -.05 

 Regression of intercept on time-invariant covariate set to .30 

 Regression of slope on time-invariant covariate ranged from .001 to .015 

(Refer to Appendix for Syntax) 

 



 

Figure 7. Power estimates for Model 3.  

 

Table 7. Tabulated power estimates for Model 3.  

Effect 
Size Waves 1-5 Waves 1-6 Waves 1-7 Waves 1-8 Waves 1-9 Waves 1-10 

0.001 0.065 0.075 0.083 0.090 0.109 0.109 

0.002 0.104 0.141 0.181 0.218 0.270 0.293 

0.003 0.177 0.252 0.353 0.428 0.512 0.563 

0.004 0.287 0.411 0.563 0.666 0.754 0.804 

0.005 0.420 0.588 0.747 0.843 0.909 0.943 

0.006 0.557 0.747 0.878 0.946 0.975 0.989 

0.007 0.697 0.865 0.956 0.985 0.995 0.998 

0.008 0.806 0.938 0.987 0.998 1.000 1.000 

0.009 0.888 0.976 0.997 0.999 1.000 1.000 

0.010 0.942 0.991 0.999 1.000 1.000 1.000 

0.011 0.972 0.997 1.000 1.000 1.000 1.000 

0.012 0.988 0.999 1.000 1.000 1.000 1.000 

0.013 0.997 1.000 1.000 1.000 1.000 1.000 

0.014 0.999 1.000 1.000 1.000 1.000 1.000 

0.015 1.000 1.000 1.000 1.000 1.000 1.000 

 



Model 4: LGM with six time-invariant covariates, varying the conditional effect of focal 

covariate on slope 

 

 

Figure 8. Example Model 4 Simulating Waves 1 – 10.  

 

Summary of model parameters 

 Equally dispersed fixed periods between each wave (0,1,2, etc) 

 Models ranged from those simulating Waves 1-5 up to Waves 1-10 

 Mean of y indicators set to 0, residual variance of y indicators set to .50 

 Means of x1-x6 set to 0, variance of x indicators set to 1. 

 One x indicator specified as categorical.  

 Intercept mean set to 4, slope variance set to 1 

 Slope mean set to .01, slope variance set to .01 

 Covariance of slope and intercept set to -.05 

 Population covariances between x1-x6 time-invariant covariates set to .40 

 Regression of intercept on time-invariant focal covariate set to .30 

 Regression of intercept on time-invariant other covariates set to .31, .32, .33, .34, .35 

 Regression of slope on time-invariant other covariates set to .05, .04, .03, .02, .01 

 Regression of slope on time-invariant focal covariate ranged from .001 to .015 

(Refer to Appendix for Syntax) 

 

 



 

Figure 9. Power estimates for Model 4.  

 

Table 8. Tabulated power estimates for Model 4.  

Effect 
Size Waves 1-5 Waves 1-6 Waves 1-7 Waves 1-8 Waves 1-9 Waves 1-10 

0.001 0.059 0.063 0.074 0.081 0.086 0.088 

0.002 0.091 0.117 0.142 0.167 0.198 0.208 

0.003 0.144 0.198 0.258 0.327 0.380 0.421 

0.004 0.222 0.310 0.408 0.512 0.597 0.658 

0.005 0.323 0.446 0.583 0.703 0.782 0.837 

0.006 0.430 0.588 0.742 0.848 0.907 0.946 

0.007 0.550 0.726 0.856 0.935 0.970 0.985 

0.008 0.661 0.830 0.933 0.977 0.991 0.998 

0.009 0.762 0.906 0.973 0.993 0.999 1.000 

0.010 0.843 0.955 0.989 0.998 1.000 1.000 

0.011 0.905 0.981 0.997 0.999 1.000 1.000 

0.012 0.946 0.992 0.999 1.000 1.000 1.000 

0.013 0.971 0.997 1.000 1.000 1.000 1.000 

0.014 0.987 0.999 1.000 1.000 1.000 1.000 

0.015 0.994 1.000 1.000 1.000 1.000 1.000 

 



Model 5: LGM with second-order polynomial, varying the random effect of the 

quadratic component of the slope. 

 

 

Figure 10. Example Model 5 Simulating Waves 1 – 10.  

 

Summary of model parameters 

 Equally dispersed fixed periods between each wave (0,1,2, etc) 

 Models ranged from those simulating Waves 1-5 up to Waves 1-10 

 Mean of y indicators set to 0, residual variance of y indicators set to .50 

 Intercept mean set to 4, variance set to 1 

 Slope of linear effect mean set to .20, variance set to .10 

 Slope of quadratic effect mean set to -.03, variance ranged from .001 to .015 

 Covariance of intercept and linear effect set to .10 

 Covariance of intercept and quadratic effect set to -.03 

 Covariance of linear and quadratic effect set to -.001 

(Refer to Appendix for Syntax) 



 

 Figure 11. Power estimates for Model 5.  

  



 

Table 9. Tabulated power estimates for Model 5.  

Effect 
Size Waves 1-5 Waves 1-6 Waves 1-7 Waves 1-8 Waves 1-9 Waves 1-10 

.0010 0.113 0.535 0.999 1.000 1.000 1.000 

.0015 0.189 0.852 1.000 1.000 1.000 1.000 

.0020 0.291 0.973 1.000 1.000 1.000 1.000 

.0025 0.406 0.997 1.000 1.000 1.000 1.000 

.0030 0.527 1.000 1.000 1.000 1.000 1.000 

.0035 0.646 1.000 1.000 1.000 1.000 1.000 

.0040 0.744 1.000 1.000 1.000 1.000 1.000 

.0045 0.829 1.000 1.000 1.000 1.000 1.000 

.0050 0.890 1.000 1.000 1.000 1.000 1.000 

.0055 0.934 1.000 1.000 1.000 1.000 1.000 

.0060 0.961 1.000 1.000 1.000 1.000 1.000 

.0065 0.979 1.000 1.000 1.000 1.000 1.000 

.0070 0.990 1.000 1.000 1.000 1.000 1.000 

.0075 0.995 1.000 1.000 1.000 1.000 1.000 

.0080 0.998 1.000 1.000 1.000 1.000 1.000 

.0085 0.999 1.000 1.000 1.000 1.000 1.000 

.0090 1.000 1.000 1.000 1.000 1.000 1.000 

.0095 1.000 1.000 1.000 1.000 1.000 1.000 

.0100 1.000 1.000 1.000 1.000 1.000 1.000 

.0105 1.000 1.000 1.000 1.000 1.000 1.000 

.0120 1.000 1.000 1.000 1.000 1.000 1.000 

.0125 1.000 1.000 1.000 1.000 1.000 1.000 

.0130 1.000 1.000 1.000 1.000 1.000 1.000 

.0135 1.000 1.000 1.000 1.000 1.000 1.000 

.0140 1.000 1.000 1.000 1.000 1.000 1.000 

.0145 1.000 1.000 1.000 1.000 1.000 1.000 

.0150 1.000 1.000 1.000 1.000 1.000 1.000 

       

 

 

  



Model 6: LGM with second-order polynomial, varying the mean of the quadratic 

component of the slope. 

 

Figure 12. Example Model 6 Simulating Waves 1 – 10.  

 

Summary of model parameters 

 Equally dispersed fixed periods between each wave (0,1,2, etc) 

 Models ranged from those simulating Waves 1-5 up to Waves 1-10 

 Mean of y indicators set to 0, residual variance of y indicators set to .50 

 Intercept mean set to 4, variance set to 1 

 Slope of linear effect mean set to .20, variance set to .10 

 Slope of quadratic effect mean ranged from -.001 to -.015, variance set to .01 

 Covariance of intercept and linear effect set to .10 

 Covariance of intercept and quadratic effect set to -.03 

 Covariance of linear and quadratic effect set to -.001 

(Refer to Appendix for Syntax) 



 

Figure 13. Power estimates for Model 6. 

 

Table 10. Tabulated power estimates for Model 6.  

Effect 
Size Waves 1-5 Waves 1-6 Waves 1-7 Waves 1-8 Waves 1-9 Waves 1-10 

0.001 0.063 0.094 0.122 0.158 0.180 0.208 

0.002 0.120 0.234 0.361 0.479 0.564 0.610 

0.003 0.219 0.451 0.671 0.816 0.888 0.921 

0.004 0.362 0.685 0.896 0.965 0.986 0.995 

0.005 0.524 0.866 0.980 0.997 1.000 1.000 

0.006 0.685 0.955 0.997 1.000 1.000 1.000 

0.007 0.812 0.990 1.000 1.000 1.000 1.000 

0.008 0.903 0.999 1.000 1.000 1.000 1.000 

0.009 0.957 1.000 1.000 1.000 1.000 1.000 

0.010 0.983 1.000 1.000 1.000 1.000 1.000 

0.011 0.994 1.000 1.000 1.000 1.000 1.000 

0.012 0.999 1.000 1.000 1.000 1.000 1.000 

0.013 1.000 1.000 1.000 1.000 1.000 1.000 

0.014 1.000 1.000 1.000 1.000 1.000 1.000 

0.015 1.000 1.000 1.000 1.000 1.000 1.000 

 



Model 7: LGM with six covariates, varying the conditional effect of focal covariate on 

quadratic component of slope. 

 

 

Figure 14. Example Model 7 Simulating Waves 1 – 10.  

 

Summary of model parameters 

 Equally dispersed fixed periods between each wave (0,1,2, etc) 

 Models ranged from those simulating Waves 1-5 up to Waves 1-10 

 Mean of y indicators set to 0, residual variance of y indicators set to .50 

 Means of x1-x6 set to 0, variance of x indicators set to 1. 

 One x indicator specified as categorical.  

 Intercept mean set to 4, slope variance set to 1 

 Slope of linear effect mean set to .20, variance set to .10 

 Slope of quadratic effect mean set to -.03, variance set to .04 

 Covariance of intercept and linear effect set to .15 

 Covariance of intercept and quadratic effect set to -.10 

 Covariance of linear and quadratic effect set to -.05 

 Population covariances between x1-x6 time-invariant covariates set to .40 

 Regression of intercept on time-invariant focal covariate set to .30 

 Regression of linear slope on time-invariant focal covariate set to .10 

 Regression of intercept on time-invariant covariates set to .35, .34, .33, .32, .31 

 Regression of linear slope on time-invariant covariates set to .11, .12, -.13, -.14, -.15 

 Regression of quad slope on time-invariant covariates set to -.05, -.06, .07, .08, .09 

 Regression of quadratic slope on time-invariant focal covariate ranged  

from -.001 to --.015 

(Refer to Appendix for Syntax) 

 



 

 

 

Figure 15. Example Model 7 Simulating Waves 1 – 10.  

 

  



 

Table 11. Tabulated power estimates for Model 7.  

Effect 
Size Waves 1-5 Waves 1-6 Waves 1-7 Waves 1-8 Waves 1-9 Waves 1-10 

-.0010 0.057 0.072 0.074 0.082 0.082 0.086 

-.0015 0.072 0.094 0.107 0.125 0.129 0.133 

-.0020 0.092 0.128 0.160 0.182 0.195 0.203 

-.0025 0.116 0.175 0.224 0.260 0.279 0.292 

-.0030 0.145 0.230 0.300 0.349 0.374 0.393 

-.0035 0.181 0.292 0.392 0.450 0.481 0.500 

-.0040 0.220 0.370 0.487 0.552 0.585 0.613 

-.0045 0.270 0.449 0.580 0.656 0.690 0.718 

-.0050 0.325 0.527 0.671 0.747 0.780 0.808 

-.0055 0.383 0.609 0.752 0.820 0.853 0.877 

-.0060 0.440 0.684 0.823 0.878 0.908 0.924 

-.0065 0.502 0.756 0.879 0.926 0.945 0.960 

-.0070 0.564 0.819 0.921 0.954 0.970 0.979 

-.0075 0.626 0.866 0.951 0.973 0.985 0.991 

-.0080 0.681 0.904 0.970 0.986 0.994 0.997 

-.0085 0.735 0.935 0.984 0.993 0.997 0.999 

-.0090 0.781 0.959 0.991 0.997 0.999 0.999 

-.0095 0.824 0.973 0.995 0.998 0.999 1.000 

-.0100 0.861 0.983 0.997 0.999 1.000 1.000 

-.0105 0.892 0.989 0.999 1.000 1.000 1.000 

-.0120 0.918 0.994 1.000 1.000 1.000 1.000 

-.0125 0.940 0.997 1.000 1.000 1.000 1.000 

-.0130 0.955 0.998 1.000 1.000 1.000 1.000 

-.0135 0.967 1.000 1.000 1.000 1.000 1.000 

-.0140 0.976 1.000 1.000 1.000 1.000 1.000 

-.0145 0.984 1.000 1.000 1.000 1.000 1.000 

-.0150 0.989 1.000 1.000 1.000 1.000 1.000 
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Appendix 

 

MODEL 1 

 

TITLE: 

 

Monte Carlo Simulations used to estimate the statistical  

power of latent growth parameters in the NZAVS.  

 

Chris Sibley and Petar Milojev, 06-11-2014 

 

MONTECARLO:                 

 

NAMES ARE y1-y10; 

NOBSERVATIONS = 23000;  !Total N ever sampled 

NREPS = 10000;          !Number of replications 

SEED = 65474;           !Random Seed 

CLASSES = C(1);         !Used for extending to non-normal models 

GENCLASSES = C(1); 

 

PATMISS = y1(.847) y2(.937) y3(.831) y4(.601) y5(.339) y6(.497)  

          y7(.623) y8(.725) y9(.806) y10(.871)|      

          !.870 of sample have missing data according to these proportions 

          y1(0) y2(0) y3(0) y4(0) y5(0) y6(0)  

          y7(0) y8(0) y9(0) y10(0);                      

          !.130 have 0 missing data 

 

!y1(.847) y2(.937) y3(.831) y4(.601) y5(.339) y6(.497) y7(.623) y8(.725) y9(.806) y10(.871) 

| 

 

PATPROB = .870|.130; 

 

ANALYSIS:                  

 

TYPE = MIXTURE; 

ESTIMATOR = ML; 

 

MODEL MONTECARLO: 

 

%OVERALL% 

 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;   

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; 

[s*0]; s*.001;  !Values we change  

 

i WITH s*0; 

 



%C#1% 

 

[i*4]; 

[s*0]; 

 

MODEL: 

 

%OVERALL% 

 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;   

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; 

[s*0]; s*.001;  !Values we change  

 

i WITH s*0; 

 

%C#1% 

 

[i*4]; 

[s*0]; 

 

MODEL 2 

 

TITLE: 

 

Monte Carlo Simulations used to estimate the statistical  

power of latent growth parameters in the NZAVS.  

 

Chris Sibley and Petar Milojev, 06-11-2014 

 

MONTECARLO:                 

 

NAMES ARE y1-y10; 

NOBSERVATIONS = 23000;  !Total N ever sampled 

NREPS = 10000;          !Number of replications 

SEED = 65474;           !Random Seed 

CLASSES = C(1);         !Used for extending to non-normal models 

GENCLASSES = C(1); 

 

PATMISS = y1(.847) y2(.937) y3(.831) y4(.601) y5(.339)  

          y6(.497) y7(.623) y8(.725) y9(.806) y10(.871) |      

          !.870 of sample have missing data according to these proportions 

          y1(0) y2(0) y3(0) y4(0) y5(0) 

          y6(0) y7(0) y8(0) y9(0) y10(0);                      

          !.130 have 0 missing data 

 

PATPROB = .870|.130; 

 



ANALYSIS:                  

 

TYPE = MIXTURE; 

ESTIMATOR = ML; 

 

MODEL MONTECARLO: 

 

%OVERALL% 

 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;   

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0;    

[s*.001]; s*.005;  !Values we change  

 

i WITH s*0; 

 

%C#1% 

 

[i*4]; 

[s*.001];          !Values we change 

 

MODEL: 

 

%OVERALL% 

 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;   

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0;    

[s*.001]; s*.005;  !Values we change  

 

i WITH s*0; 

 

%C#1% 

 

[i*4]; 

[s*.001];          !Values we change 

 

MODEL 3 

 

TITLE: 

 

Monte Carlo Simulations used to estimate the statistical  

power of latent growth parameters in the NZAVS.  

 

Chris Sibley and Petar Milojev, 06-11-2014 

 



MONTECARLO:                 

 

NAMES ARE y1-y10 x1; 

!CUTPOINTS = x1 (0);    !Specifies Categorical x var 

NOBSERVATIONS = 23000;  !Total N ever sampled 

NREPS = 10000;          !Number of replications 

SEED = 35479;           !Random Seed 

CLASSES = C(1);         !Used for extending to non-normal models 

GENCLASSES = C(1); 

 

PATMISS = y1(.847) y2(.937) y3(.831) y4(.601) y5(.339)  

          y6(.497) y7(.623) y8(.725) y9(.806) y10(.871) |      

          y1(0) y2(0) y3(0) y4(0) y5(0) y6(0) y7(0) y8(0) y9(0) y10(0);                      

 

PATPROB = .870|.130; 

!SAVE = data out.txt; 

 

ANALYSIS:                  

 

TYPE = MIXTURE; 

ESTIMATOR = ML; 

 

MODEL MONTECARLO: 

 

%OVERALL% 

 

[x1@0]; x1@1;  

 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;     

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; 

[s*.01]; s*.01;   

 

i WITH s*-.05; 

 

i ON x1*.30; 

s ON x1*.001;  !Varying this parameter 

 

%C#1% 

[i*4];  

[s*.01]; 

 

MODEL: 

 

%OVERALL% 

 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;     

 



[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; 

[s*.01]; s*.01;   

 

i WITH s*-.05; 

 

i ON x1*.30; 

s ON x1*.001;  !Varying this parameter 

 

%C#1% 

[i*4];  

[s*.01]; 

 

MODEL 4 

 

TITLE: 

 

Monte Carlo Simulations used to estimate the statistical  

power of latent growth parameters in the NZAVS.  

 

Chris Sibley and Petar Milojev, 06-11-2014 

 

MONTECARLO:                 

 

NAMES ARE y1-y10 x1-x6; 

CUTPOINTS = x2 (0);            !Specifies Categorical x var 

NOBSERVATIONS = 23000;         !Total N  

NREPS = 10000;                 !Number of replications 

SEED = 66449;                  !Random Seed 

CLASSES = C(1);                

GENCLASSES = C(1); 

 

PATMISS = y1(.847) y2(.937) y3(.831) y4(.601) y5(.339)  

          y6(.497) y7(.623) y8(.725) y9(.806) y10(.871) |      

          y1(0) y2(0) y3(0) y4(0) y5(0) y6(0) y7(0) y8(0) y9(0) y10(0);                      

 

PATPROB = .870|.130; 

!SAVE = data out.txt; 

 

ANALYSIS:                  

 

TYPE = MIXTURE; 

ESTIMATOR = ML; 

 

MODEL MONTECARLO: 

 

%OVERALL% 

 

[x1-x6@0]; x1-x6*1; 



 

x1 WITH x2*.4; x1 WITH x3*.4; x1 WITH x4*.4; 

x1 WITH x5*.4; x1 WITH x6*.4; x2 WITH x3*.4; 

x2 WITH x4*.4; x2 WITH x5*.4; x2 WITH x6*.4; 

x3 WITH x4*.4; x3 WITH x5*.4; x3 WITH x6*.4; 

x4 WITH x5*.4; x4 WITH x6*.4; x5 WITH x6*.4; 

 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;     

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; [s*.01]; s*.01;   

 

i WITH s*-.05; 

 

i ON x1*.30; s ON x1*.001;  !Varying this parameter 

i ON x2*.35; s ON x2*.01;   

i ON x3*.34; s ON x3*.02;   

i ON x4*.33; s ON x4*.03;   

i ON x5*.32; s ON x5*.04;   

i ON x6*.31; s ON x6*.05;   

 

%C#1% 

[i*4]; [s*.01]; 

 

MODEL: 

 

%OVERALL% 

 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;     

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; [s*.01]; s*.01;   

 

i WITH s*-.05; 

 

i ON x1*.30; s ON x1*.001;  !Varying this parameter 

i ON x2*.35; s ON x2*.01;   

i ON x3*.34; s ON x3*.02;   

i ON x4*.33; s ON x4*.03;   

i ON x5*.32; s ON x5*.04;   

i ON x6*.31; s ON x6*.05;   

 

%C#1% 

[i*4]; [s*.01];  

 

 

MODEL 5 

 



TITLE: 

 

Monte Carlo Simulations used to estimate the statistical  

power of latent growth parameters in the NZAVS.  

 

Chris Sibley and Petar Milojev, 06-11-2014 

 

MONTECARLO:                 

 

NAMES ARE y1-y10; 

NOBSERVATIONS = 23000;  !Total N ever sampled 

NREPS = 10000;          !Number of replications 

SEED = 45348;           !Random Seed 

CLASSES = C(1);         !Used for extending to non-normal models 

GENCLASSES = C(1); 

 

PATMISS = y1(.847) y2(.937) y3(.831) y4(.601) y5(.339) y6(.497)  

          y7(.623) y8(.725) y9(.806) y10(.871)|      

          !.870 of sample have missing data according to these proportions 

          y1(0) y2(0) y3(0) y4(0) y5(0) y6(0)  

          y7(0) y8(0) y9(0) y10(0);                      

          !.130 have 0 missing data 

 

PATPROB = .870|.130; 

 

ANALYSIS:                  

 

TYPE = MIXTURE; 

ESTIMATOR = ML; 

 

MODEL MONTECARLO: 

 

%OVERALL% 

 

i s q | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;   

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; 

[s*.20]; s*.10;    

[q*-.03]; q*.001;  !Values we change 

 

i WITH s*.10; 

i WITH q*-.03; 

s WITH q*-.001; 

 

MODEL: 

 

%OVERALL% 

 



i s q | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;   

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; 

[s*.20]; s*.10;    

[q*-.03]; q*.001;  !Values we change 

 

i WITH s*.10; 

i WITH q*-.03; 

s WITH q*-.001; 

 

 

MODEL 6 

 

TITLE: 

 

Monte Carlo Simulations used to estimate the statistical  

power of latent growth parameters in the NZAVS.  

 

Chris Sibley and Petar Milojev, 06-11-2014 

 

MONTECARLO:                 

 

NAMES ARE y1-y10; 

NOBSERVATIONS = 23000;  !Total N ever sampled 

NREPS = 10000;          !Number of replications 

SEED = 65474;           !Random Seed 

CLASSES = C(1);         !Used for extending to non-normal models 

GENCLASSES = C(1); 

 

PATMISS = y1(.847) y2(.937) y3(.831) y4(.601) y5(.339) y6(.497)  

          y7(.623) y8(.725) y9(.806) y10(.871)|      

          !.870 of sample have missing data according to these proportions 

          y1(0) y2(0) y3(0) y4(0) y5(0) y6(0)  

          y7(0) y8(0) y9(0) y10(0);                      

          !.130 have 0 missing data 

 

PATPROB = .870|.130; 

 

ANALYSIS:                  

 

TYPE = MIXTURE; 

ESTIMATOR = ML; 

 

MODEL MONTECARLO: 

 

%OVERALL% 

 

i s q | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;     



 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; 

[s*.20]; s*.10;    

[q*-.001]; q*.01;  !Values we change 

 

i WITH s*.10; 

i WITH q*-.03; 

s WITH q*-.001; 

 

MODEL: 

 

%OVERALL% 

 

i s q | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;     

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; 

[s*.20]; s*.10;    

[q*-.001]; q*.01;  !Values we change 

 

i WITH s*.10; 

i WITH q*-.03; 

s WITH q*-.001; 

 

MODEL 7 

 

TITLE: 

 

Monte Carlo Simulations used to estimate the statistical  

power of latent growth parameters in the NZAVS.  

 

Chris Sibley and Petar Milojev, 06-11-2014 

 

MONTECARLO:                 

 

NAMES ARE y1-y10 x1-x6; 

CUTPOINTS = x2 (0);     !Specifies Categorical x var 

NOBSERVATIONS = 23000;  !Total N ever sampled 

NREPS = 10000;          !Number of replications 

SEED = 198327;          !Random Seed 

CLASSES = C(1);         !Used for extending to non-normal models 

GENCLASSES = C(1); 

 

PATMISS = y1(.847) y2(.937) y3(.831) y4(.601) y5(.339) y6(.497)  

          y7(.623) y8(.725) y9(.806) y10(.871)|      

          !.870 of sample have missing data according to these proportions 

          y1(0) y2(0) y3(0) y4(0) y5(0) y6(0)  



          y7(0) y8(0) y9(0) y10(0);                      

          !.130 have 0 missing data                    

 

PATPROB = .870|.130; 

!SAVE = data out.txt; 

 

ANALYSIS:                  

 

TYPE = MIXTURE; 

ESTIMATOR = ML; 

 

MODEL MONTECARLO: 

 

%OVERALL% 

 

[x1-x6@0]; x1-x6*1; 

 

x1 WITH x2*.4; x1 WITH x3*.4; x1 WITH x4*.4; 

x1 WITH x5*.4; x1 WITH x6*.4; x2 WITH x3*.4; 

x2 WITH x4*.4; x2 WITH x5*.4; x2 WITH x6*.4; 

x3 WITH x4*.4; x3 WITH x5*.4; x3 WITH x6*.4; 

x4 WITH x5*.4; x4 WITH x6*.4; x5 WITH x6*.4; 

 

i s q | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;     

 

[y1-y10@0]; y1-y10*.5; 

 

[i*4]; i*1.0; 

[s*.20]; s*.10;    

[q*-.03]; q*.04;   

 

i WITH s*.15; 

i WITH q*-.10; 

s WITH q*-.05; 

 

i ON x1*.30; s ON x1*.10; q ON x1*-.001; !Varying this parameter 

i ON x2*.35; s ON x2*.11; q ON x2*-.05;  

i ON x3*.34; s ON x3*.12; q ON x3*-.06;  

i ON x4*.33; s ON x4*-.13; q ON x4*.07;  

i ON x5*.32; s ON x5*-.14; q ON x5*.08;  

i ON x6*.31; s ON x6*-.15; q ON x6*.09;  

 

MODEL: 

 

%OVERALL% 

 

i s q | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8 y10@9;   

 

[y1-y10@0]; y1-y10*.5; 

 



[i*4]; i*1.0; 

[s*.20]; s*.10;    

[q*-.03]; q*.04;   

 

i WITH s*.15; 

i WITH q*-.10; 

s WITH q*-.05; 

 

i ON x1*.30; s ON x1*.10; q ON x1*-.001; !Varying this parameter 

i ON x2*.35; s ON x2*.11; q ON x2*-.05;  

i ON x3*.34; s ON x3*.12; q ON x3*-.06;  

i ON x4*.33; s ON x4*-.13; q ON x4*.07;  

i ON x5*.32; s ON x5*-.14; q ON x5*.08;  

i ON x6*.31; s ON x6*-.15; q ON x6*.09; 


