
Difference-imaging
photometry with pyDIA

Michael Albrow
University of Canterbury

Crowding

100 arcsec1 degree

35 arcsec

Difference imaging
If we have a reference image, R, and a series of
target images, Tα, then we define the difference
image

Kα is a convolution kernel computed to
minimize

R T D

R T D

Example: KMT-2015-BLG-023

Time-series of difference images

dophot

pysis

pySIS pyDIA

pySIS: single star, python + C, CPU

pyDIA: all stars, python + (CUDA) C, CPU or GPU

pyDIA philosophy

Don't reinvent the wheel.

Use standard python packages if possible for higher
level tasks. Make things easy to customize.

Use C/CUDA only for the lowest-level routines.

Make it all open source.

pyDIA capabilities

Alignment

Masking

Reference image construction

Star detection

Reference photometry

Difference imaging

pyDIA capabilities

Difference image photometry

Variable star detection

Coordinate refinement

Calibration, CMDs, etc

Alignment

Offset determined by cross-correlation.

Integer pixel translation, preserves pixel
independence and noise characteristics.

Masking
Circular areas around saturated stars.

Bleeding trails detected with an extended
Prewitt filter.

Reference image
Automated or manual selection of images to
stack. Generally based on images with smallest
FWHM and lowest background.

Object catalogue

Uses daofind from (pyraf) DAOphot package.

Option of using existing catalogue. Code will
align catalogue to reference image.

Reference image
photometry

Uses routines from the DAOphot package (in
python) to compute PSF and do photometry of
the reference image (psf/allstar).

Reference image
photometry

Automated kernel density estimation of red
clump centroid.

Difference imaging

Uses extended modified-delta-basis functions
for kernel representation.

User can set independent spatial degrees for
the kernel intensity, kernel shape and
background.

Difference imaging

If we have a reference image, R, and a series of
target images, Tα, then we define the difference
image

Kα is a convolution kernel computed to
minimize

Kernel representation

For a constant kernel, K can be decomposed
into a linear sum of pre-defined basis functions

Gaussian-polynomial basis functions

Alard & Lupton (1998)

Delta basis functions

Bramich (2008)

Spatial dependence

If the mapping from reference to target image
has a spatial dependence, the kernel
representation becomes

Photometric scale

The kernel sum

gives the photometric scale for the mapping.

Modified delta basis functions

Bramich, Horne, Albrow et al. (2013)

Modified delta basis
functions

Since all the kernel basis functions except one
have a zero sum, the photometric scaling is
controlled by the coefficients corresponding to a
single kernel element. The remaining coefficients
only describe shape-changes.

This decomposition allows us to set the spatial
degree of the photometric scaling separately
from the spatial degree of the shape changes.

Difference imaging

Kernel evaluated in CUDA (GPU) or C (CPU).

Can use all image pixels or small stamps.

Can iteratively reject residuals from kernel
calculation.

Computing the kernel
coefficients

Computing the kernel involves filling and
inverting a large matrix, where the matrix
elements are sums of products of the reference
and target image pixels. This is computationally
intensive.

GPU’s for computation

GP100
3584 cores

5.3 TFLOPS
Double Precision

GPU solution

We can use a GPU, with
thousands of processing
cores, to compute the
matrix elements in
parallel.

Each matrix element is
computed by a CUDA
block, threads are used to
multiply and add image
pixels.

NVIDIA CUDA

Difference-Image
Photometry

Use reference-image PSF computed by
DAOphot (gaussian + LUT).

Convolve PSF with kernel.

For each star in catalogue:

evaluate PSF at star pixels

evaluate flux by fitting PSF to difference
image

Photometry

CUDA photometry code

One CUDA block of 16 x 16 threads per
star.

Each thread corresponds to an image/PSF
pixel.

Calibration of
lightcurves to reference

photometry scale

Blended-target
photometry

Refined photometry for individual targets can
be performed. This uses residuals in the
difference images (after subtraction of the
stellar PSF) to refine the coordinates.

The algorithm used is the same as in pySIS - see
Albrow et al. (2009), MNRAS, 397, 2099

Image-level checks

OB170482

KMT - CTIO

raw

filtered

Hardware
requirements for GPU

version
PC or Mac with an NVIDIA GPU available for
computation (i.e. not being used to drive a display).

Software requirements

Linux or OSX/MacOS

NVIDIA CUDA drivers (for GPU version)

Python 2.7 with

numpy / scipy / astropy / pyraf / scikit-learn

pyCUDA (for GPU version)

#
Set the package install location
#
import sys
sys.path.append('/home/mda45/PythonPackages')

#
Import the high-level pipeline routines
#
from pyDIA import DIA_GPU as DIA

#
Load parameter defaults and override if necessary
#
params = DIA.DS.Parameters()
params.gain = 1.55
params.readnoise = 5.0
params.loc_data = 'Images'
params.loc_output = 'Output'

#
Perform the difference imaging and photometry
#
DIA.imsub_all_fits(params)

Typical timings

For 512 x 512 pixel KMT subimages:

10,000 stars, 3 s per image for difference
imaging (with degree 1 kernel) and
photometry (using a GP100)

Availability

Open source.

Download from:

https://github.com/MichaelDAlbrow/pyDIA

https://github.com/MichaelDAlbrow/pyDIA

