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Difference imaging
If we have a reference image, R, and a series of 
target images, Tα, then we define the difference 
image

Kα is a convolution kernel computed to 
minimize
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Example: KMT-2015-BLG-023

Time-series of difference images
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pySIS       pyDIA

pySIS: single star, python + C, CPU

pyDIA: all stars, python + (CUDA) C, CPU or GPU



pyDIA philosophy

Don't reinvent the wheel.

Use standard python packages if possible for higher 
level tasks. Make things easy to customize.

Use C/CUDA only for the lowest-level routines.

Make it all open source.



pyDIA capabilities

Alignment

Masking

Reference image construction

Star detection

Reference photometry

Difference imaging



pyDIA capabilities

Difference image photometry

Variable star detection

Coordinate refinement

Calibration, CMDs, etc



Alignment

Offset determined by cross-correlation.

Integer pixel translation, preserves pixel 
independence and noise characteristics. 



Masking
Circular areas around saturated stars.

Bleeding trails detected with an extended 
Prewitt filter.



Reference image 
Automated or manual selection of images to 
stack. Generally based on images with smallest 
FWHM and lowest background.



Object catalogue

Uses daofind from (pyraf) DAOphot package.

Option of using existing catalogue. Code will 
align catalogue to reference image. 



Reference image 
photometry

Uses routines from the DAOphot package (in 
python) to compute PSF and do photometry of 
the reference image (psf/allstar).



Reference image 
photometry

Automated kernel density estimation of red 
clump centroid.



Difference imaging

Uses extended modified-delta-basis functions 
for kernel representation. 

User can set independent spatial degrees for 
the kernel intensity, kernel shape and 
background.



Difference imaging

If we have a reference image, R, and a series of 
target images, Tα, then we define the difference 
image

Kα is a convolution kernel computed to 
minimize



Kernel representation

For a constant kernel, K can be decomposed 
into a linear sum of pre-defined basis functions



Gaussian-polynomial basis functions 

Alard & Lupton (1998)



Delta basis functions 

Bramich (2008)



Spatial dependence

If the mapping from reference to target image 
has a spatial dependence, the kernel 
representation becomes



Photometric scale

The kernel sum

gives the photometric scale for the mapping.



Modified delta basis functions 

Bramich, Horne, Albrow et al. (2013)



Modified delta basis 
functions 

Since all the kernel basis functions except one 
have a zero sum, the photometric scaling is 
controlled by the coefficients corresponding to a 
single kernel element. The remaining coefficients 
only describe shape-changes. 

This decomposition allows us to set the spatial 
degree of the photometric scaling separately 
from the spatial degree of the shape changes.



Difference imaging

Kernel evaluated in CUDA (GPU) or C (CPU).

Can use all image pixels or small stamps.

Can iteratively reject residuals from kernel 
calculation.



Computing the kernel 
coefficients

Computing the kernel involves filling and 
inverting a large matrix, where the matrix 
elements are sums of products of the reference 
and target image pixels. This is computationally 
intensive.



GPU’s for computation

GP100
3584 cores

5.3 TFLOPS
Double Precision



GPU solution

We can use a GPU, with 
thousands of processing 
cores, to compute the 
matrix elements in 
parallel. 

Each matrix element is 
computed by a CUDA 
block, threads are used to 
multiply and add image 
pixels.

NVIDIA CUDA 



Difference-Image 
Photometry

Use reference-image PSF computed by 
DAOphot (gaussian + LUT).

Convolve PSF with kernel.

For each star in catalogue:

evaluate PSF at star pixels

evaluate flux by fitting PSF to difference 
image



Photometry

CUDA photometry code

One CUDA block of 16 x 16 threads per 
star.

Each thread corresponds to an image/PSF 
pixel.



Calibration of 
lightcurves to reference 

photometry scale



Blended-target 
photometry

Refined photometry for individual targets can 
be performed.  This uses residuals in the 
difference images (after subtraction of the 
stellar PSF) to refine the coordinates.

The algorithm used is the same as in pySIS - see 
Albrow et al. (2009), MNRAS, 397, 2099



Image-level checks
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Hardware 
requirements for GPU 

version
PC or Mac with an NVIDIA GPU available for 
computation (i.e. not being used to drive a display).



Software requirements

Linux or OSX/MacOS

NVIDIA CUDA drivers (for GPU version)

Python 2.7 with

numpy / scipy / astropy / pyraf / scikit-learn

pyCUDA (for GPU version)



#
#  Set the package install location
#
import sys
sys.path.append('/home/mda45/PythonPackages')

#
# Import the high-level pipeline routines
#
from pyDIA import DIA_GPU as DIA

#
# Load parameter defaults and override if necessary
#
params = DIA.DS.Parameters()      
params.gain = 1.55
params.readnoise = 5.0
params.loc_data = 'Images'
params.loc_output = 'Output'

#
# Perform the difference imaging and photometry
#
DIA.imsub_all_fits(params)



Typical timings

For 512 x 512 pixel KMT subimages:

10,000 stars, 3 s per image for difference 
imaging (with degree 1 kernel) and 
photometry (using a GP100)



Availability

Open source.

Download from:

https://github.com/MichaelDAlbrow/pyDIA

https://github.com/MichaelDAlbrow/pyDIA

