Event Rates at the Galactic Center: a UKIRT near-IR Survey

Geoffrey Bryden Jet Propulsion Laboratory

UKIRT microlensing team:

Yossi Shvartzvald, Sebastiano Calchi Novati, Savannah Jacklin, Calen Henderson, Scott Gaudi, Matthew Penny, David Nataf, Chas Beichman, Kiri Wagstaff

ASA Exoplanet Science Institu

Microlensing 21 Flashback

Yossi introduced the survey last year:

- Initial analysis of a few low-b fields, ~5% of total dataset
- Discovery of 5 highly-extinguished low-b microlensing events
- Preliminary estimate of the event rate at b ≈ 1°

A Near-IR Survey with UKIRT

UKIRT telescope:

- 3.8m NIR telescope @ Mauna Kea
- Average seeing ~0.8"

WFCAM camera:

- Four NIR detectors
- 0.4"/pixel
- Four exposures covers 0.75 sq.deg
- Available filters ZYJHK

Scientific goals of UKIRT survey

NIR event rate as a function of (*I*,*b*):

- Crucial for WFIRST field optimization
- Combined with dust models \rightarrow Galactic structure

Event timescale as a function of (*I*,*b*):

Bulge-bulge events are expected to be shorter (Gould 1995)

NIR coverage of events:

- Source color for Einstein radius (with finite source effects)
- NIR source flux for future AO lens flux measurements

New science:

• High cadence (daily) observations of unexplored regions (Galactic center).

UKIRT 2015-2016 microlensing surveys

2015 survey - Spitzer:

- Area: 3.4 deg²
- Duration: 39 nights
- Cadence: 5 epochs/night
- Total epochs per field: ~145
- Filter: H

2016 survey - K2C9:

- Area: 6.0 deg²
- Duration: 91 nights
- Cadence: 2-3 epochs/night
- Total epochs per field: ~160
- Filter: *H*

Shvartzvald et al. 2017

UKIRT 2017(-2019) microlensing surveys

<u>2017:</u>

- Area: 10.5 deg²
- Dates: 20/Apr (4/May) 30/Aug
- Duration: 133 nights
- Cadence: 1-3 epochs/night
- Filters: H / K

UKIRT 2017(-2019) microlensing surveys

<u>2017:</u>

- Area: 10.5 deg²
- Dates: 20/Apr (4/May) 30/Aug
- Duration: 133 nights
- Cadence: 1-3 epochs/night
- Filters: H / K

model: [

(deg.) م

Q

10

Photometry

Photometry methods:

- 1. Soft-edged aperture photometry by CASU (Hodgkin et al. 2009)
 - Several apertures: 0.5", 0.7", 1", 1.4"....
 - 2MASS calibrated
 - Spatial distortion corrected
- 2. PSF photometry using Sextractor (Bertin & Arnouts 1996) and PSFEx (Bertin 2011)
 - ~2MASS calibrated
- 3. DIA photometry for specific events using pySis (Albrow et. al. 2009)

Photometry – CASU vs. PSF

Precision:

- Reaching <2% level
- CASU is better at H<14.5

Source detection:

- Number of sources similar for H<15
- PSF much better for faint sources
- In total, almost twice as many sources with PSF
- Red clump excess around H=13.5

Event detection

- Event finder similar to KMT (Kim et al. 2018), based on a 2-D (t₀, t_{eff}) grid search
- Conservative detection threshold: $\Delta \chi^2 > 500$
- Challenges: outliers, variable stars, long events

Event Detection Statistics			
Season	Location	Lightcurves	Candidates
2015	North	6.7M	563
2016	South	11.3M	845
2017	N+S+Central	18.1M	3352

Manual UKIRT Lightcurve Evaluator (MULE)

For now we are using a python-based GUI to identify microlensing events among the candidate lightcurves **by eye**.

We are implementing a machine-learning classification system.

Current results with a random forest classifier (cf. Wyrzykowski+ 2015) are promising (false positive/negative rates below 20%), but are limited by the information content within the chosen set of lightcurve features. New metrics need to be included.

UKIRT microlensing events

<u>2015:</u>

• North – 13 (4 UKIRT-only)

<u>2016:</u>

• South – 53 (16)

<u>2017:</u>

- North 16 (8)
- Central 69 (68)
- South 26 (16)

Detection efficiency – Future work

Image level injection/recovery:

- Event injections using PSF templates from PSFEx
- Run through the full pipeline (PSF photometry + event detection)

Savannah Jacklin PhD student Vanderbilt

Detection efficiency

Lightcurve-level detection simulations:

Northern fields

Central fields

Near-IR event rate

Source density

Detection efficiency

Near-IR event rate

Preliminary results:

- 1. High event rate in the central fields
- 2. No excess of events in the northern bulge

Additional Science

<u>2015:</u>

• A massive remnant in wide binary:

OGLE-2015-1285 (Shvartzvald et al. 2015)

<u>2016:</u>

Planets:

MOA-2016-227 (Koshimoto et al. 2017) OGLE-2016-0163 (Han et al. 2017) OGLE-2016-1190 (Ryu et al. submitted) OGLE-2016-0241 (Poleski et al. in prep.)

<u>2017:</u>

Planet:

OGLE-2017-0173 (Hwang et al. 2017)

UKIRT-2017-BLG-001b

Summary

- 2017 survey of the galactic center (inner 1°) finds a high microlensing rate
- 2018 survey will repeat these fields, adding baseline and improving statistics
- We will meanwhile improve the analysis
 - lower detection thresholds
 - Iower detection thresholds
 machine learning for event classification ¹/₂
 - injection/recovery for detection efficiency

 Lightcurves are publicly available in the NASA Exoplanet Archive (see next next

talk)https://exoplanetarchive.ipac.caltech.edu/docs/UKIRTMission.html https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblSearch/nphtblSearchInit?app=ExoTbls&config=ukirttimeseries

