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Problems and Opportunities:

“Closer” to light curves (i.e. more data-centric)

e Correlated noise in light curves - how does a more
advanced noise model change your inferred
parameter values?

Computationally expensive ray-shooting codes -
can statistical emulation speed up microlensing
parameter estimation?

Likelihood of data given parameters can be
multimodal, and caustic topographies are not
continuous - how to choose the best model?

o Daisuke
;. Suzuki’s
N

oo Population analyses depend on uncertain and

b oo correlated parameter values for individual events -
how to account for these in a self-consistent
probabilistic framework?

“Farther” from light curves (i.e. more model-centric)
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Correlated Noise

Lesson learned from transits: Kepler-91 b (Barclay et al. 2015)
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Correlated Noise

Lesson learned from transits: Kepler-91 b (Barclay et al. 2015)
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Correlated Noise

Lesson learned from transits: Kepler-91 b (Barclay et al. 2015)
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detections & parameter values!




Correlated Noise

Lesson learned from radial velocities: RV Fitting Challenge

Team Technigues (Dumusque et

Torino Bayesian framework with Gaussian process to account for red noise

Oxford Bayesian framework with Gaussian process to account for red noise al 2 O 1 7)
M. Tuomi Bayesian framework with Moving Average to account for red noise .
P. Gregory Bayesian framework with apodized Keplerians to account for red noise

Geneva Bayesian framework with white noise .
A. Hatzes Pre-whitening 1 ) A Bayes lan

Brera Filtering in frequency space
IMCCE Compressed sensing and filtering in frequency space (preliminary results) fra mewo rk +

red noise
model
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ad 3' 6" reliable and
i complete
‘\' detections.

Inflexible noise
Claimed planet and true Il Pianet not detected K/N > 7.5 models more

I Probable planet and true I Pianet not detected K/N < 7.5 often lead to

- Claimed planet with wrong K or P - Probable planet but mistake inaCCU rate
parameter

values.

- Probable planet but wrong K or P False positive or false negative




Correlated Noise

Effect on microlensing parameters (from Albrow’s 2017 talk)
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Correlated Noise

Effect on microlensing parameters (from Albrow’s 2017 talk)
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Red noise can seriously mislead you, too!! Test more than tg!



Problems and Opportunities:

“Closer” to light curves (i.e. more data-centric)

e Correlated noise in light curves - how does a more
advanced noise model change your inferred
parameter values?

From Youn Kiuui%g*s By i :
2017 tale Computationally expensive ray-shooting codes -
can statistical emulation speed up microlensing
parameter estimation?

Likelihood of data given parameters can be
multimodal, and caustic topographies are not
continuous - how to choose the best model?
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o Daisuke
i Suzuki’s
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ok e Population analyses depend on uncertain and

& ook correlated parameter values for individual events -
how to account for these in a self-consistent
probabilistic framework?

“Farther” from light curves (i.e. more model-centric)




Statistical Emulation

of computationally expensive astrophysical simulations

Is there a more
efficient way to
compute the grids
of q, s, and a?
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YES: statistical
emulation
... plus it allows
you to interpolate
the grid for free
. .. plus that
interpolation is
probabilistic




Statistical Emulation

A 1-dimensional conceptual example

True function, emulated mean function and 95% prediction intervals

Use a Gaussian Process
to predict the true,
. unknown function
between the (with uncertainties)

(where
the expensive

code was run)
I I

0.2 0.4

Courtesy of Derek Bingham




Statistical Emulation

A multi-dimensional
astrophysical example
(Czekala et al. 2017)

K 0
0 5 10 15 20 25 0 5 10 15 20 25 30
t [days]

Simulated the time-
varying spectrum of an
SB1 binary star system

Used a Gaussian
Process emulator to
model the spectrum,
predict/interpolate the
radial velocities of each . .
component, and infer f -
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Model Comparison
Which caustic topology best fits the data?

Actually have 3
separate models
to fit to the data ...
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Actually have 3
separate models
to fit to the data ...
which leads to
multimodal
likelihood spaces

Is it better to identify
a single point as a
best fit, or to
integrate over the
parameters for that
model to identify
most likely topology?




Model Comparison
Which caustic topology best fits the data?

Actually have 3
separate models
to fit to the data ...

-How cahhyc}u do model comparison?
See Ben Nelson’s talk on Saturday

W|th Iessons Iearned from RV.

a single point as a
best fit, or to
integrate over the
T parameters for that

15 2.0 model to identify
Seporotlon (d) most likely topology?
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Microlensing Populations

Within a Hierarchical Bayesian Framework

What do | mean?

Individual
Parameters

(likelihood - MCMC)

Observables




Microlensing Populations

Within a Hierarchical Bayesian Framework

What do | mean?

Population
Parameters

Expand your likelihood!

Individual
Parameters

Observables
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Structure helps constrain posteriors:
Wolfgang & Lopez, 2015
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Within a Hierarchical Bayesian Framework

What do | mean?

Population
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Structure helps constrain posteriors:

Wolfgang & Lopez, 2015

Why do we need it!

e Parameter inference with uncertainties

* Naturally deals with large measurement
uncertainties and upper limits

e Can account for selection effects
*within* the inference

* Simultaneous posteriors on individual
and population parameters

* Directly ties theory to observations

* Framework for model comparison

Still use MCMC: “Just” adding another layer of probabilistic structure




Microlensing Populations

What would a hierarchical Bayesian framework add?

1) Uncertainties in population ca
easily and self-consistently
Incorporate uncertainties
(including correlated) on
ulensing, physical, *and”
nuisance parameters
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2) Can incorporate all degenerate
solutions probabilistically.
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Probabilistic Populations

Examples from Kepler (Wolfgang et al. 2015, 2016):
sub-Neptune compositions and mass-radius relations

Allows for a distribution
of masses at a given radius
as is motivated by
observations and theory

Can distinguish between
scatter due to
measurement uncertainty
and astrophysical scatter
in the planet population
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Thank you - Thoughts?

“Closer” to light curves (i.e. more data-centric)
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