Statistical Opportunities in Microlensing

The goal of this talk: To start a conversation

Angie Wolfgang Penn State NSF Postdoctoral Fellow

Problems and Opportunities:

"Closer" to light curves (i.e. more data-centric)

- Correlated noise in light curves how does a more advanced noise model change your inferred parameter values?
- Computationally expensive ray-shooting codes can statistical emulation speed up microlensing parameter estimation?
- Likelihood of data given parameters can be multimodal, and caustic topographies are not continuous - how to choose the best model?
- Population analyses depend on uncertain and correlated parameter values for individual events how to account for these in a self-consistent probabilistic framework?

Problems and Opportunities:

"Closer" to light curves (i.e. more data-centric)

- Correlated noise in light curves how does a more advanced noise model change your inferred parameter values?
- Computationally expensive ray-shooting codes can statistical emulation speed up microlensing parameter estimation?
- Likelihood of data given parameters can be multimodal, and caustic topographies are not continuous - how to choose the best model?
- Population analyses depend on uncertain and correlated parameter values for individual events how to account for these in a self-consistent probabilistic framework?

Lesson learned from transits: Kepler-91 b (Barclay et al. 2015)

Lesson learned from transits: Kepler-91 b (Barclay et al. 2015)

Lesson learned from transits: Kepler-91 b (Barclay et al. 2015)

Time from mid-transit (days)

-50-100 -150

Lesson learned from transits: Kepler-91 b (Barclay et al. 2015)

 Correlated noise can be significant for red giants (common µlensing source)

2) Can drastically change your detections & parameter values!

Lesson learned from radial velocities: RV Fitting Challenge

	Team	Techniques
1	Torino	Bayesian framework with Gaussian process to account for red noise
2	Oxford	Bayesian framework with Gaussian process to account for red noise
3	M. Tuomi	Bayesian framework with Moving Average to account for red noise
4	P. Gregory	Bayesian framework with apodized Keplerians to account for red noise
5	Geneva	Bayesian framework with white noise
6	A. Hatzes	Pre-whitening
7	Brera	Filtering in frequency space
8	IMCCE	Compressed sensing and filtering in frequency space (preliminary results)

Claimed planet and true

Probable planet and true

Claimed planet with wrong K or P

Probable planet but wrong K or P

False positive or false negative

(Dumusque et al. 2017)

1) A Bayesian framework + red noise model produces more reliable and complete detections.

2) Inflexible noise models more often lead to inaccurate parameter values.

Effect on microlensing parameters (from Albrow's 2017 talk)

Effect on microlensing parameters (from Albrow's 2017 talk)

Red noise can seriously mislead you, too!! Test more than t_E !

Problems and Opportunities:

"Closer" to light curves (i.e. more data-centric)

- Correlated noise in light curves how does a more advanced noise model change your inferred parameter values?
- Computationally expensive ray-shooting codes can statistical emulation speed up microlensing parameter estimation?
- Likelihood of data given parameters can be multimodal, and caustic topographies are not continuous - how to choose the best model?
- Population analyses depend on uncertain and correlated parameter values for individual events how to account for these in a self-consistent probabilistic framework?

Statistical Emulation

of computationally expensive astrophysical simulations

Is there a more efficient way to compute the grids of q, s, and α?

YES: statistical emulation ... plus it allows you to interpolate the grid for free ... plus that interpolation is probabilistic

Statistical Emulation

A 1-dimensional conceptual example

True function, emulated mean function and 95% prediction intervals

Х

Courtesy of Derek Bingham

Statistical Emulation

A multi-dimensional astrophysical example (Czekala et al. 2017)

Simulated the timevarying spectrum of an SB1 binary star system

Used a Gaussian Process emulator to model the spectrum, predict/interpolate the radial velocities of each component, and infer both stars' masses.

Problems and Opportunities:

"Closer" to light curves (i.e. more data-centric)

- Correlated noise in light curves how does a more advanced noise model change your inferred parameter values?
- Computationally expensive ray-shooting codes can statistical emulation speed up microlensing parameter estimation?
- Likelihood of data given parameters can be multimodal, and caustic topographies are not continuous - how to choose the best model?
- Population analyses depend on uncertain and correlated parameter values for individual events how to account for these in a self-consistent probabilistic framework?

Model Comparison

Which caustic topology best fits the data?

Actually have 3 separate models to fit to the data ...

Model Comparison

Which caustic topology best fits the data?

Actually have 3 separate models to fit to the data ... which leads to multimodal likelihood spaces

Is it better to identify a single point as a best fit, or to integrate over the parameters for that model to identify most likely topology?

Model Comparison

Which caustic topology best fits the data?

Actually have 3 separate models to fit to the data ...

a single point as a best fit, or to integrate over the parameters for that model to identify most likely topology?

Problems and Opportunities:

"Closer" to light curves (i.e. more data-centric)

- Correlated noise in light curves how does a more advanced noise model change your inferred parameter values?
- Computationally expensive ray-shooting codes can statistical emulation speed up microlensing parameter estimation?
- Likelihood of data given parameters can be multimodal, and caustic topographies are not continuous - how to choose the best model?
- Population analyses depend on uncertain and correlated parameter values for individual events how to account for these in a self-consistent probabilistic framework?

Microlensing Populations

Within a Hierarchical Bayesian Framework

What do I mean?

Individual Parameters (likelihood → MCMC) Observables

Microlensing Populations Within a Hierarchical Bayesian Framework What do I mean?

Microlensing Populations Within a Hierarchical Bayesian Framework

What do I mean?

Structure helps constrain posteriors: Wolfgang & Lopez, 2015

Microlensing Populations

Within a Hierarchical Bayesian Framework

What do I mean?

Wolfgang & Lopez, 2015

Why do we need it?

- Parameter inference with uncertainties
- Naturally deals with large measurement uncertainties and **upper limits**
- Can account for selection effects
 within the inference
- **Simultaneous posteriors** on individual and population parameters
- **Directly ties theory** to observations
- Framework for model comparison

Still use MCMC: "Just" adding another layer of probabilistic structure

Microlensing Populations What would a hierarchical Bayesian framework add?

Clanton & Gaudi 2017

2) Can incorporate all degenerate solutions probabilistically.

Suzuki et al. 2017

 Uncertainties in population car easily and self-consistently incorporate uncertainties (including correlated) on µlensing, physical, *and* nuisance parameters

Probabilistic Populations

Examples from Kepler (Wolfgang et al. 2015, 2016): sub-Neptune compositions and mass-radius relations

Allows for a distribution of masses at a given radius as is motivated by observations and theory

Can distinguish between scatter due to measurement uncertainty and astrophysical scatter in the planet population

No binning necessary; also includes upper limits

Thank you - Thoughts?

"Closer" to light curves (i.e. more data-centric)

- Correlated noise in light curves how does a more advanced noise model change your inferred parameter values?
- Computationally expensive ray-shooting codes can statistical emulation speed up microlensing parameter estimation?
- Likelihood of data given parameters can be multimodal, and caustic topographies are not continuous - how to choose the best model?
- Population analyses depend on uncertain and correlated parameter values for individual events how to account for these in a self-consistent probabilistic framework?