
Department of Electrical and Computer Engineering

COMPSYS202 / MECHENG270

Course Outline

Semester Two, 2010

COMPSYS 202 Object‐oriented Design and Programming (15pts): A project‐based

course, with extensive hands‐on programming experience. Includes: an introduction to

object‐oriented programming in a modern high level language, algorithms, data

abstraction and elementary data structures; an introduction to good programming practise,

including an overview of software engineering, software quality, design patterns, testing

and user-interface design.

MECHENG 270 Software Design (15pts): Fundamentals of software design and high

level programming making use of case studies and programming projects. Includes:

requirements analysis, specification methods, software architecture, software development

environments, software quality, modularity, maintenance, reusability and reliability;

models of software development.

Staff Roles
Dr. George Coghill

Room: 303.157

E-Mail: g.coghill@auckland.ac.nz

Course Co-ordinator

Mr. Colin Coghill

Room: 303.234

E-Mail: c.coghill@auckland.ac.nz

Lecturer,

Project 1,

Test 1

To Be Announced TA and Lab Management

Mr. Jamie Walker

Room: 301.231

E-Mail: it-

support@ece.auckland.ac.nz

Linux systems administrator, accounts,

systems, applications

Assessment
Week Assessment Weighting Due

2-6, 7-11 Lab Exercises 20% (2% each) During Lab

4 Test 1 20% Wed 11 Aug

6 Project 1 20% Mon 23 Aug

11 Test 2 20% Mon 11 Oct

12 Project 2 20% Wed 23 Oct

Lectures: There are four regular lecture slots. Some of these slots may be used for

revision or tutorial style work. You are expected to attend all lectures if possible, and

should take notes.

Lab Exercises: There are regular lab exercises. You are expected to work on these

during your assigned lab session on Tuesday or Wednesday, and demonstrate your work

to the TA so they can sign off. Each exercise is work 2% of your course mark. A log

book must be kept to record actual hours you spend on each part of the assessment,

and show this to the TAs in your demos. Also, summarise the hours you spend on each

exercise or project.

Tests: There are two tests, each worth 20% of your course mark. These will be written

tests, one during week 4 and one during week 11. Exact time, day, and location will be

announced in lectures, and via Cecil.

Projects: As this is a practical subject, you will be expected to complete two large

programming projects. You must work on these individually, although of course you can

get help from your TA or other course staff. Project handouts describing these will be

made available in lectures and via Cecil at an appropriate time.

Exam: There is no final exam.

 Mon Tue Wed Thu Fri

10am Lab Slot A, B

UG3, UG4
Lab Slot E, F

UG3, UG4

11am Lab Slot C, D

UG3, UG4
Lab Slot G, H

UG3, UG4

12pm

1pm Lecture

Eng 1401

2pm Lecture

Eng 1401

3pm Lecture

Eng 1401

4pm Lecture

Eng 1401

Overall goals and learning outcomes

The overall goal is for students to work independently and develop their programming

knowledge and skills. The detailed learning outcomes of this course are for:

• Students to gain experience in software engineering design by undertaking individual

projects involving a significant programming component using a modern High-level object-

oriented programming language, in this case C++.

• Students to be competent using an appropriate set of software development tools, including

compiler, editor, debugger, and multiple file build tool(s). In this case, Linux command line

tools, which complement the Microsoft Visual Studio tools used in ENGGEN 131, and

expands the student experience in programming tools.

• Students to understand how the object-oriented paradigm extends the programming model,

via the concepts of data abstraction, inheritance, polymorphism and composition.

• Students to review and implement appropriate algorithms, data abstraction methodologies

and data structures and thus gain an appreciation of how concepts can be reliably realised in

code.

• Students to understand the activities in a software engineering project.

• Students to understand desirable properties that a computer program should possess.

• Students to be aware of recognised object-oriented design principles including design

patterns and architectures and understand why these are important.

• Students to have a basic grounding in user interface design.

• Students to understand the role that testing plays in program development and to be able to

follow a test-first approach to program development.

• Students to establish good coding practices including documentation and version control.

Where COMPSYS 202 and MECHENG 270 fits in...

Both courses follow on from the part 1 prerequisite, ENGGEN 131 – Introduction to

Engineering Computation and Software Development course, where introductory

programming skills were taught in Matlab and C with Microsoft Visual Studio tools.

Programming skills are further developed in the third year: (a) in design papers, where

microcomputers are programmed in C, (b) in COMPSYS 302 Design:

Software Practice in larger, hands-on programming projects, (c) in SOFTENG 325

Software Architecture, (d) in MECHENG 313 Real time software design, and in

the final year: (a) project papers where many projects involve programming in C

and C++, (b) in COMPSYS 406 Robotics and Intelligent Systems, (c) in COMPSYS 404

Real Time Systems.

Course Approach
The course approach is “hands on”; design skills and knowledge are acquired by

practice on carefully selected exercises and projects. Software design is a skill that can

not be taught as a passive, academic subject, nor memorised from notes. You will learn

most by embracing this approach, committing your energy to actively solving the

project problems, spending time investigating a variety of possible solutions, and

exploring the programming tools available on the computer.

It is important to realise the difference between passive and active knowledge.

Passive knowledge is the kind of thing you can be told in lectures, read about, remember

and repeat when asked in an examination. Active knowledge is something you can

acquire only by actively solving problems, continually practicing skills and using the

knowledge you acquire by a combination of acquiring information and putting it to use

to solve problems. This means you need to practice your programming all the time

and solve all the problems for yourself. The skill to create your own programs

involves much more than understanding others’ programming, and it is this creative

skill that we will be assessing in the course.

The main programming ideas, exercises and projects will be explained briefly in

lectures, and then it is up to you to take charge of the problem. You will need to follow

up by reading the text book carefully, trying out the programming ideas mentioned, and

also by finding your own material in the library. Student–driven lab exercises will

enable you to ask for help after the initial introduction.

Grade expectations:
Numerical marks will be assigned to each student for each component, and at the end of

the paper a total mark will be calculated as a percentage. A letter grade will be assigned

to the total mark. For a pass, you should aim for 60% or higher.

Late penalty:
Late work will be assigned 0 marks. Exceptions to penalties because of unforeseen
circumstances must be discussed with the course co‐ordinator as soon as possible. We

can use the Aegrotat process if needed but you will need to supply evidence (eg. a note

from your doctor).

Computing resources:
You will be given computer accounts on the ECE Department Linux system and are

accessible in the ECE Department labs and Engineering School labs. You can use any of

these labs to do your programming work.

Help with the ECE Department Linux system can be found on the following webpage:

https://www.ece.auckland.ac.nz/it-support/wiki/LinuxFAQ

or email:

it-support@ece.auckland.ac.nz

For questions on C++ programming and lab assistance see your TA in your regular lab

sessions, or the teaching staff during their office hours.

Accessing the labs between 10pm to 7am, 7 days a week is disallowed; you are required

to leave the building. Security staff patrol the labs for no access after hours. In general,

the laboratory access times should be displayed at the entrance to the laboratory.

We will be using the GNU C/C++ compiler (the commands are gcc and g++) and other

tools with the Linux version of the Unix operating system, for example gedit and eclipse

are used to edit files, and make is used to build projects.

UG1 (303.148), UG2 (303.153), UG3 (303.155) and UG4 (303.105) are on the

first floor of the Science centre at 38 Princes Street.

For FAQ’s of technical problems (logging on, computers, network, Linux etc) use
the email it‐support@ece.auckland.ac.nz. If there are technical problems that need

reporting to IT support please do this straight away using the same email address.

Academic honesty and plagiarism:
In the past, many students have been caught with similar code to each other. So far several
students have been taken to the University Discipline Committee and found guilty of
academic misconduct (they were fined and lost marks). The University of Auckland will not
tolerate cheating, or assisting others to cheat, and views cheating in coursework as a
serious academic offence. The work that a student submits for grading must be the student’s
own work, properly acknowledged and referenced. This requirement also applies to sources
on the world‐wide web. A student’s assessed work may be reviewed against electronic

source material using computerised detection mechanisms. Please be aware that we have
and will use online software tools for comparing students’ C++ software for similarity. In this
course you will be required to provide an electronic version of your work, through the
dropbox method. Also, see “University Guidelines: Conduct of Coursework,” :

http://www.auckland.ac.nz/uoa/about/teaching/plagiarism/plagiarism.cfm.

For any further queries please contact the lecturers.

https://www.ece.auckland.ac.nz/it-support/wiki/LinuxFAQ
mailto:it-support@ece.auckland.ac.nz
http://www.auckland.ac.nz/uoa/about/teaching/plagiarism/plagiarism.cfm

What Now?

1. Go to the ECE or Engineering School labs and ensure you can log in to remote Linux:

restart the computer and select L from the boot menu. Use your NetID and NetPassword to

log in. You can email it-support@ece.auckland.ac.nz (perhaps from Windows or ask a

friend to send from their account) if you have problems logging in.

2. Log in to Cecil and:

 view announcements, knowledge map, activities.

3. Send an email to your TA to say hello.

4. Organise lab access with your TA.

5. Start Lab Exercise 1.

6. Attend your regular lab session each week (either Tuesday or Wednesday).

