Time-resolved Spectroscopy of Solar Harvesting Complexes

<u>Julie Kho</u>

Ali Hosseini, Peter Boyd, and Cather Simpson

2013 Chemical Sciences Research Showcase

Photon Factory group

The World's Energy Crisis

Energy's Tricky Tradeoffs

The world's "energy problem" is in fact a slew of technological and sociological challenges involving the use of the land, water, and air we share

Fossil Fuels are Solar Energy

Harvesting Solar Energy

...In a Laser Lab!

Assoc. Prof. Peter Boyd

Supramolecular Fullerene-Porphyrin Chemistry. Fullerene Complexation by Metalated "Jaws Porphyrin" Hosts

Dayong Sun,[†] Fook S. Tham,[†] Christopher A. Reed,^{*,†} Leila Chaker,[‡] and Peter D. W. Boyd^{*,‡}

Contribution from the Departments of Chemistry, University of California, Riverside, California 92521-0403, and The University of Auckland, Private Bag, Auckland, New Zealand

Received November 15, 2001

Dr. Ali Hosseini

$\frac{J|A|C|S}{ARTICLES}$

Calix[4]arene-Linked Bisporphyrin Hosts for Fullerenes: Binding Strength, Solvation Effects, and Porphyrin–Fullerene Charge Transfer Bands

Ali Hosseini,[†] Steven Taylor,[†] Gianluca Accorsi,[‡] Nicola Armaroli,^{*,‡} Christopher A. Reed,^{*,§} and Peter D. W. Boyd^{*,†}

Contribution from the Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, Molecular Photoscience Group, Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy, and Department of Chemistry, University of California, Riverside, California 92521

Received August 18, 2006; E-mail: chris.reed@ucr.edu; pdw.boyd@auckland.ac.nz; armaroli@isof.cnr.it

How long is long-lived?

How long is long-lived?

Transient Absorption (TrA) Spectroscopy

2

3

A broadband (white-light) laser overlaps the pump at the sample to measure absorbance at different time delays

FsTrA Spectroscopy system in The Photon Factory

Tunable pump laser: 300-3000 nm Supercontinuum probe: 430-1500 nm Delay stage time range: up to 4 ns

Detection cameras Andor iDus CCD 1024 x 127 active pixels Andor InGaAs 512 x 1 active pixels

FsTrA Spectroscopy system in The Photon Factory

FsTrA Data Analysis

http://www.photonfactory.auckland.ac.nz/uoa/home/photon-factory/pytra

Jake Martin

J. Am. Chem. Soc. 2001, 123, 2607-2617

Modulating Charge Separation and Charge Recombination Dynamics in Porphyrin–Fullerene Linked Dyads and Triads: Marcus-Normal versus Inverted Region

Hiroshi Imahori,*.⊥ Koichi Tamaki,[‡] Dirk M. Guldi,*.[†] Chuping Luo,[†] Mamoru Fujitsuka,[§] Osamu Ito,*.[§] Yoshiteru Sakata,[‡] and Shunichi Fukuzumi*.⊥

Contribution from the Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation, Suita, Osaka 565-0871, Japan, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, and Institute for Chemical Reaction Science, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan

Received September 11, 2000. Revised Manuscript Received January 2, 2001

Fc-ZnP-C₆₀ (M=Zn) Fc-H₂P-C₆₀ (M=H₂)

Lifetime of charge separated state of up to 16 µs

FsTrA Results

Experiment parameters:

Hypothesis: charge separated state lives longer in triad than in dyad

Is it electron transfer?

It's the ligation, not the electron transfer

Lifetime Measurements Summary

Correlation between C₆₀.- **lifetime and V**

Marcus theory of

electron transfer

V = electronic coupling (in cm⁻¹)

V = electronic coupling (in cm⁻¹) e_{max} = extension coefficient of CT band (in mol⁻¹cm⁻¹) n_{max} = frequency of CT band (in cm⁻¹) Dn_{max} = full width at half height (in cm⁻¹) R_{cc} = porphyrin centre to fullerene centre distance = 6.25 Å

Approximation from charge transfer bands

What's next?

Acknowledgements

Assoc. Prof. Cather Simpson Director of Photon Factory

Assoc. Prof. Peter Boyd

Dr. Ali Hosseini

Dr. Charles Rohde

Thank you for your attention!

Sarah Thompson Jake Martin

2013 Chemical Sciences Research Showcase

$$V = \frac{2.06 \times 10^{-2} (\varepsilon_{\max} v_{\max} \Delta v_{1/2})^{1/2}}{R_{cc}}$$

Cyclohexane

Solvent	К _F (С ₆₀)	К' ₁₁	K′ ₁₂		К _F (С ₇₀)	K' ₁₁	K′ ₁₂
toluene	17,950	63,063	9,502		214,500	82,250	8,400
cyclohexane	1,815,106	52,068	8,500		4,317,136	148,733	15,085
		K ₁₁	K ₁₂	К' _F (С ₆₀)	К' _F (С ₇₀)		
toluene		K ₁₁ 23,650	K ₁₂ 4,400	К' _F (С ₆₀) 25,000	К'_F (С₇₀) 289,500		

PyTrA Analysis Package

Dispersion correction

Visualization

0.09

0.08

0.07

0.06

0.05

Sq2 0.04

0.03

0.02 0.01 0.00,

🟫 O O 🕂 🧭 🗃 🗃

Singular value decomposition

Markov Chain Monte Carlo

