Wind energy

Energy Centre summer school in Energy Economics

19-22 February 2018

Kiti Suomalainen

k.suomalainen@auckland.ac.nz

ENERGY CENTRE

BUSINESS SCHOOL

Outline

The resource

The technology

Wind energy in the world

Research at the Energy Centre

The source of wind

Wind is caused by the uneven heating of the Earth's surface by solar radiation.

Depends on:

- Latitude
- Season (summer, winter)
- Time of day (day, night)
- Type of surface (sea, land)
- Presence of clouds

Large-scale modifications to the global wind patterns caused by continents and large islands.

🛞 Global Mean Wind Speed at 80m

www.3tier.com | © 2014 3TIER by Vaisala

Wind resource in New Zealand

BUSINESS SCHOOL

Historical milestones I

Middle Ages

- Iran/Afghanistan (7th/9th century): grinding corn and pumping water
- Middle East, Central Asia, China, India, Sicily (by 1000 AD): seawater pumping for making salt
- North-western Europe (1180s on): grinding flour –

19th century

- Denmark: 2500 windmills for pumps, mills
- American mid-west: ca 6 million small windmills for irrigation
- Scotland, 1887: Prof James Blyth built the first windmill for production on electricity, used for providing lighting in his holiday cottage
- Ohio, 1888: Charles F. Brush's 17m rotor diameter wind turbine, 12 kW, used to charge batteries or operate up to 100 (inefficient!) light bulbs

Historical milestones II

20th century

- 1900-1973: wind generators widespread, but competed against fossil fuel plants and centrally generated electricity
 - USSR, 1931: 100kW, 30m diameter (d)
 - UK, early 1950s: 100kW, 24m (d)
 - Denmark, 1956: 200kW, 24m (d)
 - France, 1963: 1.1MW, 35m (d)
- 1973-onwards: oil price crisis spurred investigation of nonpetroleum energy sources
 - USA, 1987: 2.5MW, 97.5m (d)
 - USA, 1981: 3MW horizontal axis, hydraulic transmission instead of yaw drive
 - Canada, 1984: 4MW Darrieus wind turbine
 - Large turbines constructed with 1, 2 or 3 blades (prototypes)
 - Smaller, often simpler turbines available for commercial sale

Modern wind turbines

The Danish concept:

 3-bladed, stall-regulated rotor, fixed speed became dominant model in 1980s, less than 200kW rated power

More recent developments:

- 2-3MW(3-8MW)/97-117m(112-164m) diameter onshore (offshore)
- Rotor speed: Fixed speed / Variable speed
- Blade control: Full-span control of the blades (pitch regulated)
- Advanced materials: blades lighter -> can be made longer
- Drive train: Direct-drive concept vs. gearbox + high speed generator

Offshore technologies

Main issues for offshore wind power

- Going deeper, farther from coast foundations & interconnections
- Reliability high cost of maintenance!
- Need for mainstreaming installation processes (currently few specialised vessels)

World's largest wind farms

The Gansu Wind Farm Project (6000 MW). The project is one of six national wind power megaprojects approved by the Chinese government. It is expected to grow to 20,000 MW by 2020 (below)

The London Array (630 MW) World's largest offshore wind farm, 20km off the coast of Kent and Essex, England (right, both)

Wind turbine costs

BUSINESS SCHOOL

Source: IRENA, 2017.

Total installed cost reduction

Source: IRENA, 2017.

Average share of onshore wind total installed costs

BUSINESS SCHOOL

Source: IRENA, 2017.

LCoE of wind

ONSHORE WIND POWER

OFFSHORE WIND POWER

Levelised Cost of Energy → USD/kWh 0	0.05	0.10	0.15	0.20	0.25	0.30
Africa						
Asia			_	•		-
Central America and the Caribbean						
Eurasia						
Europe		-		•		•
Middle East						
North America						
Oceania						
South America						
China				•	_	
India						
United States						

Source: REN21, 2017

Wind energy in the world

Wind energy by region

Offshore wind energy by country

Wind power in the electricity mix

Source: Berkeley Lab estimates based on data from Navigant, EIA, and elsewhere

	Country (top ten producers)	% of wind in total domestic electricity generation
	Spain	17.6
	Germany	12.2
	United Kingdom	11.9
	Sweden	10.0
	United States	4.5
	Canada	3.9
	France	3.7
	Brazil	3.7
	People's Rep. of China	3.2
	India	3.1
	Rest of the world ¹	2.0
7	World	3.4

Source: IEA, 2017 Data from 2015.

Wind research at the Energy Centre: Wind, hydro and demand correlation

New Zealand's electricity prices are quite vulnerable to the natural fluctuations of hydro power availability.

The system must rely on other, generally more expensive, energy sources.

Existing and potential wind development sites

Wind-hydro correlation

Wind-demand correlation

Wind and hydro correlations with demand and prices

'The old "Chance", as man of war, merchantman, and whaler, for over one hundred years. In her last resting place. Bluff. N.S. 1902.'

Thank you

Questions?

