

Wind Energy

Presentation to Energy Centre Summer School

Grenville Gaskell, NZ Wind Energy Association February 2018

Contents

- About NZWEA
- A Historical Perspective
- Advantages of Wind Power
- National and International Trends
- Environmental Impacts
- An Operational View
- Climate Change
- Domestic Wind Turbines
- Summary

About NZWEA

- Established 1997
- An industry association
 - Promotes the development of wind as a reliable, sustainable, clean and commercially viable energy source
 - Policy & regulatory advocacy, public awareness and industry development
 - Represents around 40 companies:
 - Generators and developers
 - Turbine manufacturers, equipment suppliers, consultants
- Utility scale generation

Wind Energy, An Historical Perspective

- Internationally
 - 500 to 900 A.D used for pumping water
 - 1890's pumping water and electricity
 - 1980's first large scale wind farms
 - 1991 first off shore wind farm
 - 2002 first 3MW wind turbine

New Zealand

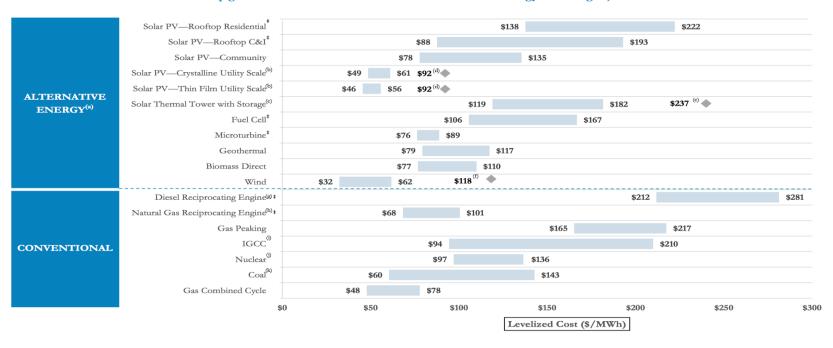
- 1970's research commenced
- 1980's recognition of commercial opportunities
- 1990's first turbines and commercial deployment
- 2004 first grid connected wind farm

Why Wind?

Renewable - produces no greenhouse gases

	Tonnes C02-e per GWh
Coal	1,000
Gas	501
Geothermal	125

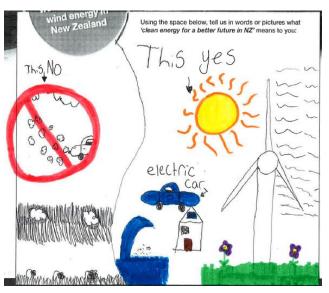
- Low investigation costs
- Cheapest form of new generation and scalable
- Consistent resource
 - Variable but seasonally reliable
 - Spatial diversity smooths output
- Synergies with hydro generation
- Strong public support


The Cost advantage of Wind

LAZARD'S LEVELIZED COST OF ENERGY ANALYSIS—VERSION 10.0

Unsubsidized Levelized Cost of Energy Comparison

Certain Alternative Energy generation technologies are cost-competitive with conventional generation technologies under some scenarios; such observation does not take into account potential social and environmental externalities (e.g., social costs of distributed generation, environmental consequences of certain conventional generation technologies, etc.), reliability or intermittency-related considerations (e.g., transmission and back-up generation costs associated with certain Alternative Energy technologies)



- Next NZ wind farm \$60+ MWh
- Benefits from economies of scale and innovation

Mostly, We Like Wind but...

- 76% of support for wind (EECA survey 2011)
- Increasing number of community wind initiatives
- Visual impacts and noise the main issues
- Challenge is for developers and operators to be good neighbours

Electricity Generation in NZ

Four Key Stages:

1900 - 80s: Hydro

1970s - 2000s:

Thermal

1990s - 2020:

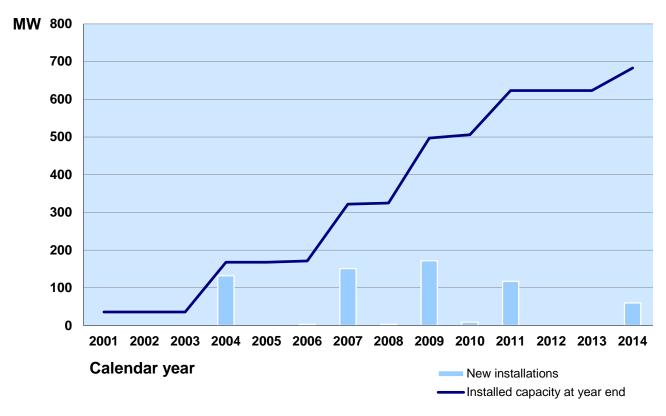
Geothermal

2000s - 2030+ is Wind

Trends in NZ

- Around 40% of gas produced in NZ is used for electricity generation
- 50% of coal used for electricity generation
- NZ baseload geothermal & combined cycle gas plants
- Renewables are increasing
 - 72% in 2000
 - 83% in 2017
 - 90% in 2025 (Govt target)
- Thermal plant closures in 2015
 - Otahuhu 400MW
 - Southdown 130MW
- Future of Huntly?

NZ - Wind Generation Today

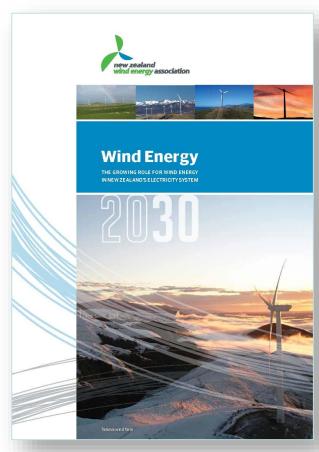


- 19 wind farms
- 690 MW generating capacity
- Around 6% of NZ's annual generation
- 2500MW consented
- Not all will be built

Wind Growth

- No major new development since 2014
- Market now talking about needing new capacity

Vision: Wind Energy 20% by 2035

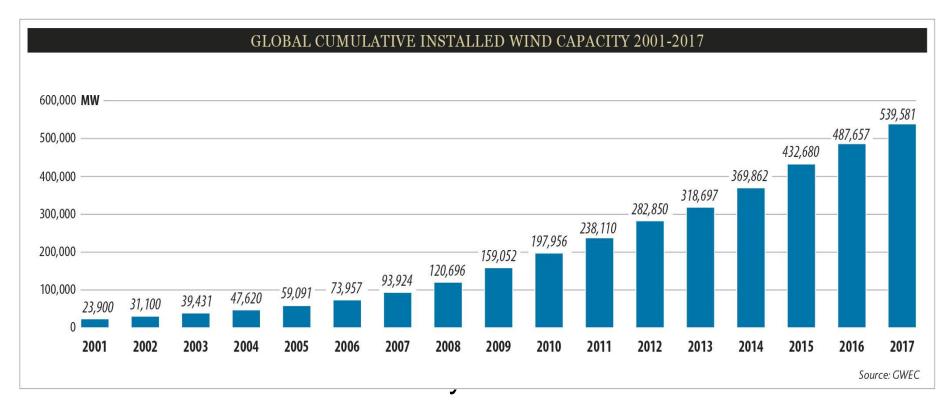


690MW now to 3100MW in 2035

Requires 150MW / \$300m investment p.a

20% wind energy

- NZ has excellent sites
- Fits with the existing electricity system
- Will deliver economic benefits
- Wind can replace the majority of NZ's gas – fired baseload generation


International Trends

- The energy transition is gathering momentum
 - 53GW new capacity in 2017
 - Global capacity 540,000 MW
- Key growth markets China, US and Germany
- Wind 17% of EU's generation capacity
 - 51% new EU generation was wind power
- Coal use in the US is the lowest since 1983
- Wind energy on track to supply 20% of US electricity by 2030
- Australia has 1,500 MW of new wind build
- The corporate imperative renewable ppa's

Spectacular Global Growth

- 540GW = 60X NZ's total installed generation
- Forecast 790 880 GW by 2020
- 1,700 2,100 GW by 2030

A long way in a short time...

- 13 fold increase in capacity in 14 years
- 4 to 6 fold reduction in costs
- Ongoing innovation in blades and software

1993: 0.225MW \$13m/MW

2007: 3MW \$2m/MW

Environmental Impacts

- RMA key to the sustainable management natural and physical resources
- Construction Phase
 - Earthworks
 - Visual
 - Noise
 - Ecology
 - Transportation / traffic effects
- Operation Maintenance Effects
 - Visual and Landscape
 - Noise
 - Ecology
 - Productive land

RMA Challenges and Opportunities

- Balancing perspectives
- Every site is different
- Stakeholder management
- Time and Cost
- Consistency of interpretation
 - Amenity impacts noise and visual
 - National Policy Statement for Renewable Energy Generation
- Key opportunities
 - National environmental standard for noise
 - More directive NPS REG
 - Repowering as a distinct activity in district plans

Operational Challenges

- Health and safety
- Wind speed
- Maintenance windows
- Market and rules
- Landowner and stakeholder management
- Ensuring compliance with consents
- Changing regulatory environment impacting investment decisions
 - Transmission / distribution pricing

Climate Change

- Gross emissions in 2015 were 80 Mt C02-e
 - Increase of 24% since 1990
 - Agriculture 38 Mt (48%)
 - Energy 33 Mt (41%)
 - IPPU / Waste 9 Mt (11%)
- Energy
 - Transport 14 Mt
 - Electricity generation 5 Mt
 - Manufacturing 5 Mt
- 30% below 2005 by 2030 = savings of 20+ Mt
- Cost without mitigations at \$50/t = \$1B +
- Net zero by 2050 ?

The Opportunity

- Options are to buy or domestic mitigation
 - Mitigation = reduce emissions or LULUCF
 - Improving energy efficiency a given
- NZ's electricity generation opportunity
 - Already 83% renewable
 - Our hydro, wind and geothermal resources are unique
 - Significant capacity to increase renewable generation
- Leverage our renewable opportunities to:
 - Replace thermal fuels used in electricity generation
 - Electrify the light vehicle passenger
 - Replace thermal fuels used to provide industrial heat
- Focus and investment required

Domestic Wind

- Several types
 - horizontal as per most windfarms
 - Vertical
 - Generally 5 kW or smaller
- Cost around \$10k + per kW
- Difficult in urban areas
 - Wind turbulent, weak and erratic
- Require speed of 4.5m/second
- Tower mounting improves performance
- Best for rural areas with consistent wind speed
- Community wind has possibilities

Wind is Now...

 From a science experiment 25 years ago wind offers an amazing opportunity

