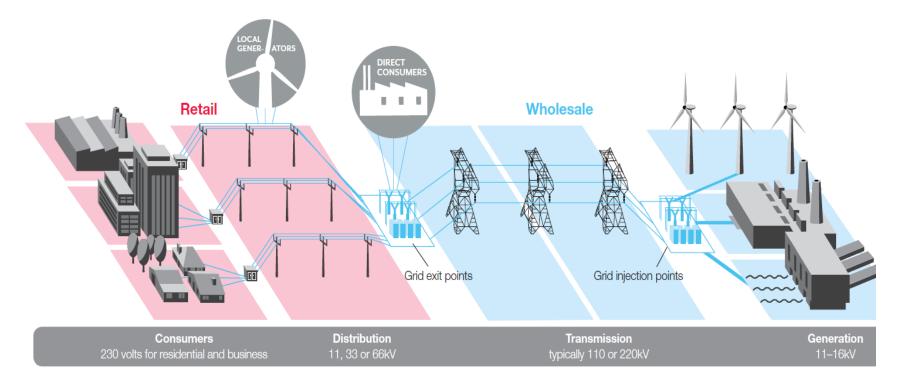
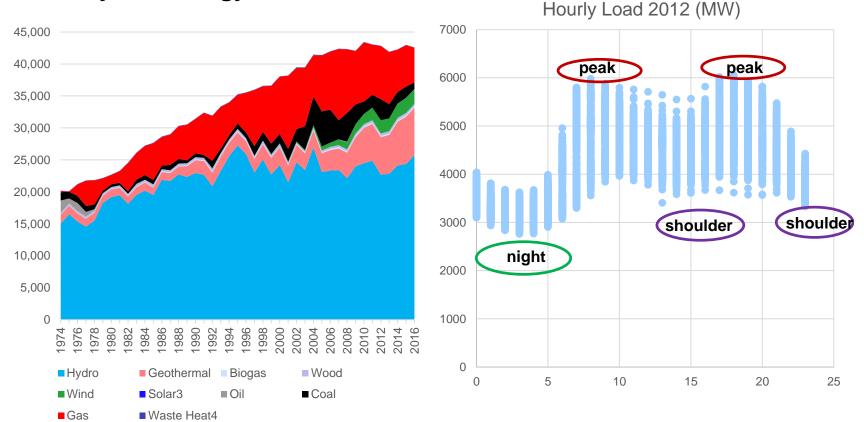

Spatial Analysis of the Merit-Order Effect of Wind Penetration in New Zealand

Le Wen

ENERGY CENTRE SUMMER SCHOOL in ENERGY ECONOMICS 20 February 2018

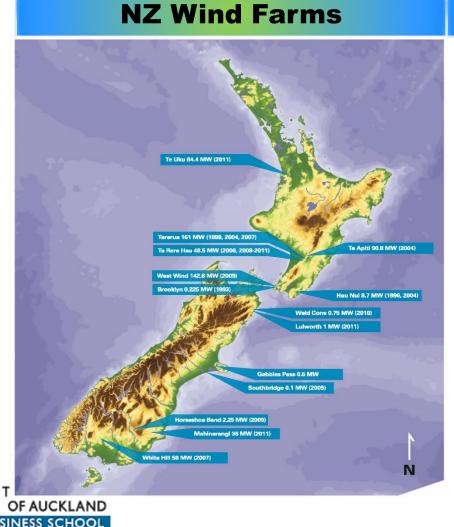


Introduction – New Zealand Electricity Market


With no subsidies for the promotion of renewable resources, New Zealand's deregulated market provides an ideal opportunity for the examination of the MOE of wind.

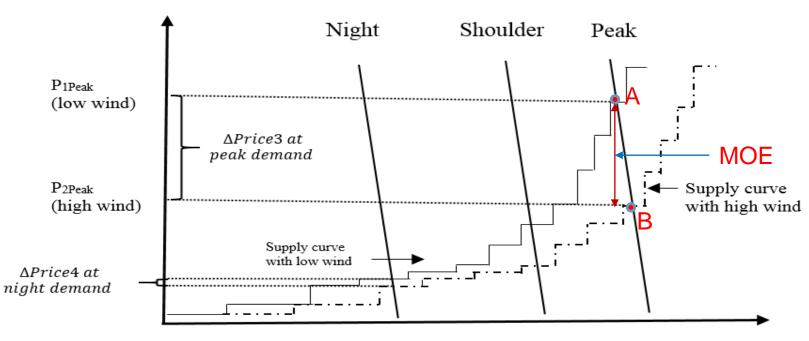
Introduction – NZ Electricity Supply and Demand

Annual Electricity Generation By technology 1974-2016

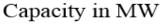

Hourly Electricity Demand

Source: Ministry of Business, Innovation & Employment, Energy in New Zealand (2017); New Zealand Electricity Authority's Centralised Dataset (CDS) 2012

Introduction - Background

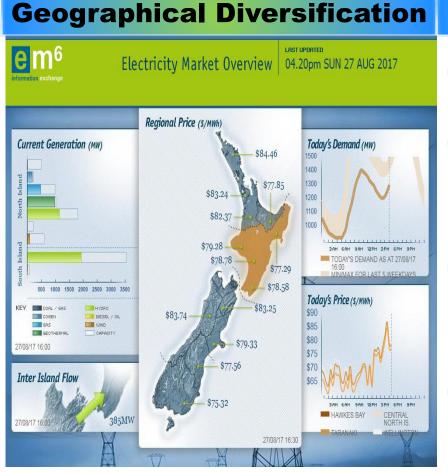


NZ Wind Generation


- 19 wind farms;
- Good wind resource with a capacity factor around 40%;
- Wind contributes 5-6% of electricity;
- 90% of electricity generated from renewable resources by 2025;
- Limited hydro expansion;
- Consented for a further 2,500 MW;
- Wind could contribute 20% by 2030.

Introduction – MOE of Wind

Merit-order effect of wind power in different demand



\$/MWh

Introduction - Motivation

Source: Energy Market Services (EMS),

http://www.em6.co.nz/em6/faces/pages/login.jspx

222 THE UNIVERSITY

BUSINESS SCHOOL

Neighbourhood effects

- The NZEM is characterized by nodal connections and geographic spread.
- Inspired by the first law of geography: "everything is related to everything else, but near things are more related than distant things" (Tobler, 1970).
- <u>Hypothesis:</u> The nodal price is influenced, not only by factors at the grid injection point, but also by factors at the neighbouring nodes.
- A spatial model is employed to study the issue of local geographic spillovers between nodal price and wind penetration.

7

Data & Variables

- Data
- New Zealand Electricity Authority's Centralised Dataset (CDS) 2012
- Explanatory variables
- wind/load, hydro/load, thermal/load, load, weekday, spring, summer, autumn
- Dependent variable
- Nodal price(\$/MWh)

Econometric Models

- Model 1: Non-Spatial Models
- $Y=X\beta+\varepsilon, \varepsilon \sim N(0,\delta^2 I_n)$
- Ordinary Least Square (without correction for endogeneity)
- Panel Fixed Effects (without considering spill-over effects)
- Price = F_{1_OLS/FE} (wind/load, hydro/load, thermal/load, load, weekday, spring, summer, autumn)

Econometric Models

Modelling Space

- Model 2: Spatial Models
 - Row-standardised spatial weight matrix W

$$W = \begin{pmatrix} 0 & w_{12} & w_{13} & w_{14} & w_{15} & w_{16} \\ w_{21} & 0 & w_{23} & w_{24} & w_{25} & w_{26} \\ w_{31} & w_{32} & 0 & w_{34} & w_{35} & w_{36} \\ w_{41} & w_{42} & w_{43} & 0 & w_{45} & w_{46} \\ w_{51} & w_{52} & w_{53} & w_{54} & 0 & w_{56} \\ w_{61} & w_{62} & w_{63} & w_{64} & w_{65} & 0 \end{pmatrix}$$

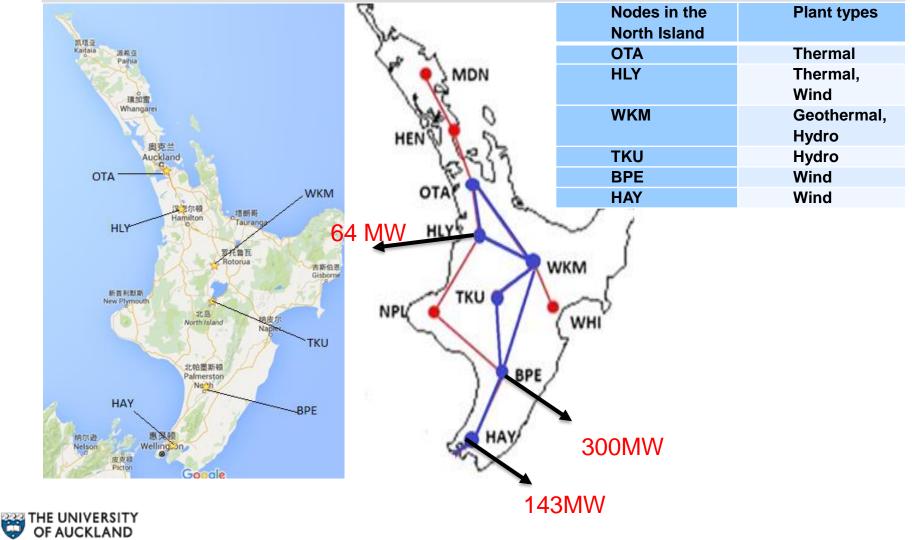
• Elements of the row-standardized spatial weights matrix W:

$$w_{ij} = \frac{\frac{1}{d_{ij}}}{\sum_{j=1}^{6} \frac{1}{d_{ij}}} \quad (i, j = 1, \dots 6; i \neq j)$$

 d_{ij} is the distance between nodes i and j.

Spatial Models

Generalized Spatial Durbin Model (SDM)


$$y_{it} = \alpha + \rho \sum_{j=1}^{n} w_{ij} y_{jt} + \sum_{k=1}^{K} X_{itk} \beta_k + \sum_{k=1}^{K} \sum_{j=1}^{n} w_{ij} X_{jtk} \theta_k + \psi load_{it} + \phi \sum_{j=1}^{n} w_{ij} load_{jt} + \sum_{i=1}^{3} M_i season_{it} + \pi week day_{it} + \mu_i + \gamma_t + \nu_{it}$$
The spatial lag of y
An average of the generation mix from neighbouring nodes
An average of load from neighbouring nodes

Econometric Models

BUSINESS SCHOOL

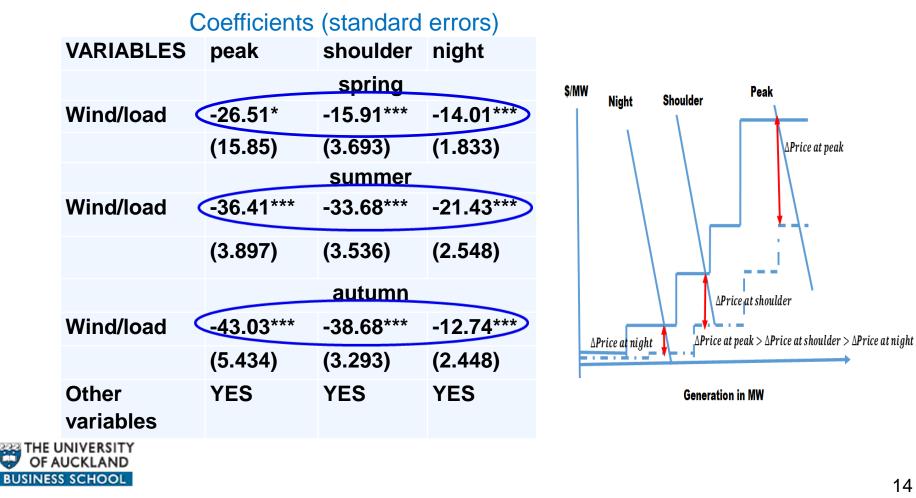
Spatial Models for the North Island

Results

Result 1

The Spatial Fixed Effects of Wind Penetration on Nodal Price 2012 (North Island by Demand Segments)

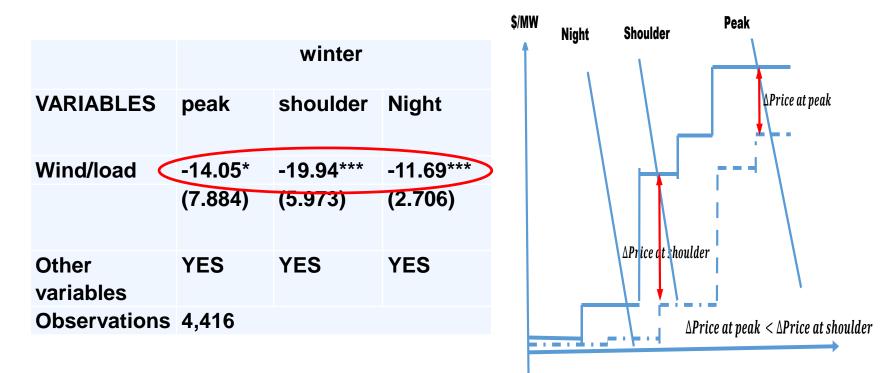
Coefficients (standard errors)


	Peak			Shoulder			Night		
VARIABLES	(1) Direct	(2) Indirect	(3) Total	(4) Direct	(5) Indirect	(6) Total	(7) Direct	(8) Indirect	(9) Total
wind/load				_		-23.59***	-2.946***		
Other variables	YES	YES	YES	YES	YES	YES	YES	YES	YES
Observations		17,568			17,568			17,568	

Results

Result 2

The Spatial Fixed Effects of Wind Penetration on Nodal Price 2012 (North Island by Season and Demand Segments)



Results

Result 2 (continued)

The Spatial Fixed Effects of Wind Penetration on Nodal Price 2012 (North Island by Season and Demand Segments)

Coefficients (standard errors)

Generation in MW

Conclusion

- Increased amount of wind injected into the grid lowers nodal price.
- A negative and significant relationship is found between nodal prices and wind penetration, both directly and indirectly.
- Ignoring spatial spill-overs leads to an underestimation of the impact of wind generation on nodal prices.

Conclusion *(continued)*

- Surplus wind generated electricity can be exported to neighbourhood nodes, which reduces nodal price at those sites.
- The significantly negative spill-over effects indicate that scalability would be a big advantage in a small electricity system like NZ where investment in additional turbines will occur as demand increases.

Implications

- The ability of spatial regression models to provide quantitative estimates of spill-over magnitudes and to allow statistical testing for the significance of these represents a valuable contribution of spatial regression models to the understanding electricity prices.
- The entry of load balancing investments into the market will depend on the relative cost of alternative technologies.
- The magnitude of MOE depends on the relative difference in marginal cost of generation technology.

Implications *(continued)*

- This study provides the system operator and investors with valuable information when increased wind penetration leads to a need to consider flexibility, and the cost of fuel switching in time of day and dry or wet seasons.
- This methodology is applicable to analysing the crossborder effects in any electricity system that has export or import opportunities from neighbouring countries such as Switzerland or Germany.

Thank you for your attention!

Authors:

Le Wen, University of Auckland, <u>I.wen@auckland.ac.nz</u> Basil Sharp, University of Auckland, <u>b.sharp@auckland.ac.nz</u>