

Distributed Generation and Battery Storage

Tony Downward, Energy Centre, University of Auckland.

1 March 2017

Overview

- Economic Fundamentals
- Distribution networks
- Residential electricity pricing
- Residential demand profiles
- Solar PV generation
- Battery technologies
- New distribution tariffs

Electricity Systems

Economic Fundamentals

Consider the cost of solar PV (in \$/kWh) across all households.

Economic Fundamentals

As well as the cost of energy from the grid.

Economic Fundamentals

Where these curves meet, we have an 'equilibrium'. So no household would elect to install

The electricity price might be too high, due to a lack of competition in the spot market.

The cost of solar PV has been dropping, and it will likely continue.

The fixed costs of distribution assets will be spread over fewer customers.

We will now consider the effect and regulatory action necessary for each of these complications.

Issue	Effect	Action
Retail prices too high		
Solar prices dropping		
Distribution charges rising		

Distribution and Retail Tariffs

Price plan Low User - All Inclusive	Meter no RX09041710	Previous reading 31962 (actual)	Latest reading 32147 (actual)	Units used 185 kWh	
- VARIABLE USAGE	E CHARGE				
Low User - All Inclusive		185 kWh × 26.28	\$48.62		
DAILY FIXED CHARGE		11 days × 33.33	\$3.67		
ELECTRICITY AUTHORITY LEVY		185 kWh x 0.15	185 kWh × 0.15 cents/kWh		
GST				\$7.89	
TOTALS				\$60.46	

Distribution and Retail Tariffs

Price plan	Meter no.	This reading	Last reading	Units used
Low User - Anytime	RX09041710	26591 (actual)	26012 (actual)	579 kWh

Current account details - For the period 28 Feb 16 to 31 Mar 16

Charge type	Units	Energy charges		Distribution and Transmission charges			
Variable usage charge Low User - Anytime Daily fixed charge Electricity Authority levy	579 kWh 33 days 579 kWh	@ @ @	15.86 cents/kWh 16.66 cents/day 0.15 cents/kWh	\$91.83 \$5.50 \$0.87	@ @	11.22 cents/kWh 16.67 cents/day	\$64.96 \$5.50
Subtotals GST Totala				\$98.20 \$14.73		_	\$70.46 \$10.57
Totals Discount for prompt payment *				\$112.93 \$11.29cr			\$81.03 \$8.10cr

Total current charges

\$193.96

Source: Electricity Authority

*GST is 15% of the pre - GST cost. Therefore it is 13% of the GST inclusive amount.

In a typical year, this money goes towards the cost

This money goes towards the cost of building and

This money goes towards the cost of building and maintaining the power lines that transport electricity

This money goes towards the operating costs of the retailer from whom you bought electricity.

This money goes towards the cost of reading and maintaining your

This money goes towards energy efficiency programmes and the costs of running the organisations that regulate the electricity industry, including us.

0.4% MARKET SERVICES

This money goes towards the operating costs of the organisations that manage the day-to-day running of the electricity market.

Distribution and Retail Tariffs

In 2004, the then Labour government under an agreement with the Greens introduced regulations in the electricity market: Low Fixed Charge Tariff option for Domestic Consumers

Low User

Total consumption is less than 8000/9000kWh per year Low daily charge (must be less than \$0.30 per day) High energy charge (\$/kWh)

Standard User

High daily charge (>\$1.00 per day) Low energy charge

Distribution and Retail Tariffs

Home News Radio Series & Podcasts Topics

New Zealand World Politics Pacific Te Ao Māori Sport Business Country Comment & Analysis

NEW ZEALAND / ENERGY

Companies question low-user power charge

7:08 am on 15 July 2015

Pressure is mounting to reverse a 10-year-old scheme that offers cheap connection charges for low-volume electricity customers.

Source: http://www.radionz.co.nz/news/national/278758/companies-question-low-user-power-charge

Distribution Costs

Capital costs

- transformers
- distribution lines

Maintenance costs

- repairs
- upkeep

• Staff costs

- managing
- repairing
- forecasting/planning

Residential Daily Demand

Solar PV Panels

3kW solar PV panels cost approximately \$10,000 to have installed on your roof.

The precise amount of electricity they produce depends on a number of factors: roof properties, location etc.

Approximately 3700kWh / year.

Solar PV Panels

If we do a rough calculation we find:

\$0.30/kWh ×3700 kWh/year = \$1118 /year.

Too good to be true?

Solar Generation

Power bought/sold

21

Summary

Solar can be very attractive if you have a high level of self-consumption.

Solar does not reduce peakconsumption, and therefore does not reduce distribution costs much.

Current distribution pricing rules create a cause a wealth-transfer from customers without solar to those with solar.

Battery Storage

Tesla Powerwall

Capacity: 7kWh Price: \$7000

Tesla Powerwall 2

Capacity: 13kWh Price: \$11000

SolaX

Capacity: 15kWh Price: \$9995

Grid-scale

Capacity: 2-3MWh

²³ Price: \$1.5m

Battery Storage

24

Power bought/sold

Types of Consumer ⁶

Payback Period for Solar/Battery

Things to consider:

Retail electricity price inflation Discount rate Amount of self-consumption Amount of solar energy

Payback Period for 3kW PV Panels

28

Summary

Batteries enable the user to reduce their peak-consumption, by storing the solar energy until the evening peak.

Given the price of batteries and the *current* distribution tariffs, batteries increase the time it takes to recover the investment costs.

Panel Prices

30

Solar investment policy

Solar investment policy

32

Alternative Solar/Storage Ownership Models

Yeloha solarZero

Source: http://www.onlinesolar.co.nz/wp-content/uploads/2014/02/B-Solar-Panel.jpg

New Distribution Pricing Structures

The Electricity Authority has been consulting with the industry for a number of years about changes to the regulations around distribution charges.

Different pricing schemes have been considered:

Time-of-use pricing Network peak demand Customer peak demand Installed capacity Booked capacity

Booked Capacity Tariff

Booked Capacity Tariff

36

Conclusions

Solar panels and batteries are becoming cheaper each year, and under the current tariff structure they will soon become economically attractive for a large number of households.

However, the current tariff structure does not adequately reflect the value / cost of the grid for these users, and will mean that households without solar will bear more of the costs.

New tariffs are needed to address this issue, although this may result in delaying the uptake of solar, it will also encourage load shifting (or the installation of batteries) to maximize the benefits and therefore the savings.

Email: a.downward@auckland.ac.nz

Thank you.