Group Projects: Business models for community energy

Energy Economics Summer School 30-2-17: 9.45 -11.45 AM

Anna L. Berka Energy Centre, University of Auckland Business School a.harnmeijer@auckland.ac.nz

This week, we learnt:

• NZ..

.. imports vast amounts of oil,

...economy increasingly service and electricity - dependent (Basil)

...energy demand is slowly growing (1.6-.8%) (Steve Poletti)

...has ample clean power in the mix / pipeline for 2030 (Mike Allen)

- Generators/retailers have to vertically integrate/hedge to deal with spot market volatility (Shane)
- Unless we wait for low cost storage...
 ...domestic solar uptake will not cap peak demand, and
 ...disproportionately affect non-solar consumers (Tony)
- To meet its 2030 climate targets

...NZ should probably focus on EE, heat, demand-side response and transport

More questions than answers

What will happen..

.. to electricity demand under different transport scenarios?

.. to gentailer balance sheets and tariff schemes esp. if / when price of solar drops?

..when storage makes intermittent renewables more readily available at any given time?

Group Projects

Introduction [9.45-10.15]:

- 1. Community energy projects across the world some distinguishing factors
- 2. Self-consumption projects
- 3. Electricity export projects
- 4. Common business models
 - A. Producer co-operative (*Mittelgrunden, DK*)
 - B. Shared ownership with a consumer co-operative (Windcentrale, NL)
 - C. Crowdsourced debenture (*Abundance, UK*)
- 5. Other models
 - A. Peer-to-peer (*Brooklyn microgrid*)
 - B. BlueSkin Bay, Dunedin
- 6. Common pitfalls and challenges
- 7. The assignment

<u>Group discussions + Tea</u> [10.15 – 11.10] <u>Regroup and present</u> [11.10-11.45]

Community energy projects - distinguishing factors

- Fully community owned v. shared ownership
 - > Joint ventures between commercial or public entities and community organisations
 - Advantages and disadvantages
- Legal incorporation
 - > Trusts or charities with pltd. subsidiaries that house projects
 - > Co-operative (or Industrial Provident Society or Community benefit society)
 - Pltd. companies
- (Project) Finance

Seed funding for feasibility assessment and resource consent:

Low risk public loan, grant, credit, revolving funds, private investment, incubators Capital investment for technology, construction, commissioning:

> Member equity, private investment, crowdsourced debenture, commercial loan

https://energyarchipelago.com/#/map

Community energy projects – distinguishing factors

- Operational models
 - Fee-for-service / pay-as-you-save models
 - Co-operative models
 - Organisational support models eg. housing association
 - Market linkage models eg. peer-to-peer trade facilitation or co-operative retailer
- Community engagement
 - Early, direct, inclusive engagement
 - What are the local needs?
 - Clear communication of motivation, distribution of benefits
 - Not just for community organisation but wider community
 - How will project process and outcome deliver tangible benefits?
 - How will the project address local needs?
 - Identify and engage with key opposing parties early in the process

Community energy projects - distinguishing factors

• Different motivations:

POLITICAL

Create actors in a renewable powered future

Empowerment and skills development

Political mobilisation

ENVIRONMENTAL

Reduced GHGs/pollution

Local environmental benefits

Increased support / reduced opposition

Increased environmental values and behaviour

Cheaper

energy/

energy

savings

More appropriate sites and scales

> Increased energy efficiency

SOCIAL

Community building/volunteering

Local ownership and decision making

Future proofing and resilience Regional development and income Community diversification asset

Shareholder income

Tourism

Community income

Local jobs and contracts

ECONOMIC

Renewable energy education and training

Energy self-sufficiency /security

TECHNOLOGICAL

Renewable energy industry development

Hicks and Ison, 2015

"Self consumption" projects

Project type	Description	Technologies	Avg Scale	Charitable	Where?
Facility projects	Charitable organisations supplying heat or power to community facilities	solar PV, micro-wind, ground/air-source heat pump, solar thermal, woodfuel boilers, (hydro)	<u>15</u> ĸW	Most	Many
Social enterprise – microgeneration projects	Energy provision for residential and facility buildings, serving as additional income generation for local NGO's with another primary activity	solar thermal, solar PV, ground/air- source heat pump, wind, woodfuel (hydro)	65ĸW	Most	Many
Micro-grids	Fully integrated generation, distribution and supply on private wires or grids	wind, hydro, solar PV, integrated	90ĸW	Most	Scottish Isles, USA, Italy, rural remote areas with high fuel cost / poor energy access
District heat networks	Generation and supply of heat (and power)	Woodfuel (CHP)	308ĸW	Some	Finland, Denmark
Low carbon micro-generation projects	Local organisations owning and managing local domestic micro-generation as part of broader carbon mitigation programmes.	solar PV, solar thermal, ground/air-source heat pumps, micro-wind	20ĸW	Few	Many
Grid integrated direct supply	Direct supply to members of consumer co- operatives.	wind, hydro	400kW	Few	Sweden, Netherlands ("Windcentrale")

"Electricity export" projects

Project type	Description	Technologies	Av. Scale	Charitable	Where?
Custodian projects	Environmental and conservation organisations developing standalone renewable energy installations to fund / complement their activities.	hydro-electric, solar PV, woodfuel (solar thermal, heatpumps)	450ĸW	Some	Many
Development projects	Run by charities / trusts owning privately constituted project entities that house income generating projects and earmark profits to a wide range of development projects	wind, hydro-electric, (solar PV, woodfuel, tidal)	1300ĸW	Most	Scotland
integrated	Microgeneration and storage units integrated in low voltage networks and interconnected to the upstream network, typically with demand management strategies.		NA	?	Eg. Brooklyn Microgrid
Energy enterprises (co- operatives)	Standalone grid-export or installations directly supplying power to local industry, typically financed through IPS's that offer citizens shares, with local, regional or national membership, including crowd sourced projects.	solar PV, wind, hydro-electric, woodfuel (solar thermal, anaerobic digestion)	450ĸW	None- Few	Germany, UK, Denmark, Australia
Landowner projects	Local farmers or estate owners collaborating to co-own installations	Wind	800kW	None	UK

Common business models

A. Consumer co-operative (Windcentrale, NL)

- Any Dutch citizen can buy equity shares for 250-300EUR
 - 1 share = approx 500kWh
 - Share price depends on cost and number of shares per turbine
 - Plus fixed opex cost per year per share
- 10 turbines, 850-2300kW, 15.000 investors, 15m EUR invested

Harm Reitsma

- Members receive dividend in form of electricity based on actual power production
 - Power produced is deducted from annual electricity bill at average annual retail price incl. VAT but excl. energy tax
 - The more wind the lower your bill up to 85% of own consumption
 - Delivered to members via dedicated retailer
 - Net return to customer if retail price increases.
- Windcentrale does not own equity; manages the project only, takes fixed fee per share (10%).
- Seed financed by two founders + NGO + bank grant
- Motivation: energy savings, political mobilisation, increased environmental values/behaviour

Common business models

B. Crowdsourced debenture (*Abundance, UK*)

- An intermediary
- Individuals buy transferrable debentures –provide debt to a commercial project, and earn interest on their investment through an FCA regulated online platform.
- School solar rooftop projects receive low cost electricity
- Wind/ AD/ hydro projects
- Minimum investment 5GBP, payback 15-20 years.

https://www.abundanceinvestment.com/why-abundance/our-track-record/funded-projects

Common business models

C. Shared ownership with producer co-operative (*Mittelgrunden Vindmollelaug, DK*)

- 20*2MW Siemens Windpower, 89GWh 3.5km East of Copenhagen harbour
- Site identified by Danish Action Plan for Offshore wind
- Initiative led by Copenhagen Environment and Energy Office
- 50% Municipal utility (Copenhagen Energy) > sold to Energi E2
- 50% Mittelgrunden wind turbine co-operative 8.553 members, 48.5m EUR total investment
 - Each share = 1000kwH/y, sold for 567 Euro.
 - Av income after depreciation for 1 share: 317.50 DKK/yr

Other case studies..

D. Development Trust - BlueSkin Wind Farm, Otago

- 3*800kW turbine, 125m
- Feasibility and EIA (2009)
 - Funded by EECA DG fund, fundraising, pro-bono contributions by network company
 - Met mast, data logger and monitoring by students, Windflow Technology, Transpower, Pioneer Energy, DNV-GL (2013 – now)
- Privately owned land 'supportive landowner' MoU
- PPA joint Contract for Difference with gentailer
- Financial modelling: consulted and pro-bono by Deloitte, EnergyLink
- Awaiting appeal for resource consent..

Early stages..

E. Peer-to-peer (Brooklyn microgrid)

- Peer-to-peer pilot project in South Brooklyn based on TAG-e technology
- Generators will be able to: 1. trade peer-to-peer, 2. store the energy in a battery located on / off site, or 3. continue to use the energy to offset own consumption.
- BMG benefit corporation. Owned by LO3 energy
- O&M by local utility ConEdison.

Factors for success

Financial	Social	Organisational	Human
Land acquisition – ownership, lease, cost	Trust, history of collective agency	Established internal management procedures	In-house technical skills
Access to at risk finance	Leadership	Legal status	Project management skills
Grid connection – headroom, distance to substation, cost		Experience running revenue – generating projects	Legal expertise
		Established procedures for community engagement, self-evaluation	Manpower
		Pro-active financial management	
		Facilities	
		External networks	

Risks, challenges

ONSHORE WIND	WIND PROJECT STAGE					
	CAPITAL COST (CAPEX)			OPERATING COST (OPEX)		
COST CATEGORY	FEASIBILITY	Planning	(PRE)-CONSTRUCTION	OPERATION	DECOMMISSIONING	
MANAGEMENT	PROJECT MANAGEMENT; LEGAL FEES	PROJECT MANAGEMENT; LEGAL FEES	PROJECT MANAGEMENT	PROJECT MANAGEMENT	PROJECT MANAGEMENT	
TECHNOLOGY	GRID APPRAISAL	UTILITY UPGRADES, TRANSFORMERS, PROTECTION, METERING AND WIRING; DESIGN ENGINEERING	TURBINE AND TOWER ACQUISITION AND TRANSPORT ; WIRING TO TURBINE BASE ; TURBINE ERECTION	INSURANCE & WARRANTEE, OPERATION AND MAINTENANCE	TECHNOLOGY DECOMMISSION AND TRANSPORT	
SCOPING, DESIGN AND PERMISSION	TECHNICAL FEASIBILITY STUDY;	ENVIRONMENTAL STATEMENT/IMPACT ASSESSMENT AND PLANNING FEES	-	_	-	
OTHER MATERIAL INPUTS	-	LAND ACQUISITION	CONSTRUCTION CONTRACTS, CONSTRUCTION OF ACCESS ROADS AND FOUNDATION; LAND LEASE	LAND LEASE	-	
FINANCING	-	-	INTEREST, EQUITY RETURNS, FINANCING FEES	INTEREST, EQUITY RETURNS, FINANCING FEES	-	
RISKS	· · ·	PLANNING REJECTION; GRID CONNECTION QUEUES AND TERMS OF POWER PURCHASE AGREEMENT	LANDING DELAYS; DELAYS IN COMMISSIONING; CHANGES IN SUPPORT MECHANISMS	EXPORT/GENERATION TARIFF; DOWN TIME; RESOURCE VARIABILITY; ELECTRICAL LOSSES; WAKE EFFECTS SOL	- rce: Harnmeijer et al	

The assignment

- Groups of 5
- Choose 1 of 5 case studies (A-E) to establish in New Zealand
 - i. Financial viability:
 - Could eg. an excellent wind resource compensate for costly grid connection and wholesale power purchase price?
 - $\,\circ\,$ If not, what else could you do to make it financially viable?
 - ii. How would you incorporate the organisation?
 - iii. Where might you obtain finance for feasibility assessment and for resource consent?
 - iv. How would you go about involving the wider community in the project?
 - v. How would you persuade stakeholders of the benefits?
 - vi. How might you secure finance for technology acquisition?

Criteria examples Advantages of proposition Capabilities Competitive advantages USP's (unique selling points) Resources, Assets, People Experience, knowledge, data Financial reserves, likely returns Marketing - reach, distribution, awareness Innovative aspects Location and geographical Price, value, quality Accreditations, qualifications, certifications Processes, systems, IT, communications	Strengths	Weaknesses	Criteria examples Disadvantages of proposition Gaps in capabilities Lack of competitive strength Reputation, presence and reach Financials Own known vulnerabilities Timescales, deadlines and pressures Cash flow, start-up cash-drain Continuity, supply chain robustness Effects on core activities, distruction Reliability of data, plan predictability Morale, commitment, leadership Accreditations etc
Criteria examples Market developments Competitors' vulnerabilities Industry or lifestyle trends Technology development and innovation Global influences New markets, vertical, horizontal Niche target markets Geographical, export, import New USP's Tactics: eg, surprise, major contacts Business and product development Information and research Partnerships, agencies	Opportunities	Threats	Criteria examples Political effects Legislative effects Environmental effects IT developments Competitor intentions - various Market demand New technologies, services, ideas Vital contracts and partners Sustaining internal capabilities Obstacles faced Insurmountable weaknesses Loss of key staff Sustainable financial backing Economy - home, abroad Seasonality, weather effects

Useful references

Typology

Alter (2007). Social enterprise typology. Virtue Ventures LLC. http://www.4lenses.org/setypology

Hicks and Ison (2015). Navigating between motivations, theory and the practical realities of community owned renewable energy. 5th EMES International Research Conference on Social Enterprise, Helsinki. <u>http://programme.exordo.com/5emesconf/delegates/presentation/278/</u>

Benefits

Berka and Creamer (2016). Taking stock of the local impacts of community renewable energy: a review and research agenda, preprinted article submitted to Renewable and Sustainable Energy Reviews, retrieved from https://www.researchgate.net/publication/312087962_Taking_stock_of_the_local_impacts_of_community_renewable_energy_a_review_and_research_agenda

O'Connor et al (2004). The contribution of Community owned renewable energy to sustainable rural development, Technical Report Department of Food, Business & Development University College Cork, <u>https://www.ucc.ie/en/media/academic/foodbusinessanddevelopment/Report5.pdf</u>

Finance/ business models

Bolinger (2011). Community wind: once again pushing the envelope of project finance. Ernest Orlando Lawrence Berkely National Laboratory, January 2011.

Larsen et al (2005). Experiences from Middelgrunden 40 MW Offshore Wind Farm, Copenhagen Offshore Wind Conference 26-28 October 2005. Scene Consulting (2015). The comparative costs of commercial and community onshore wind. CxC Report.

http://www.climatexchange.org.uk/reducing-emissions/comparative-costs-community-and-commercial-renewable-energy-projects-scotland/

Wizelius T. (2014). Ownership models in Sweden. In: Windpower ownership in Sweden: Business Models and Motives, New York.

Community engagement and shared ownership

Haggett et al (2013). Supporting community investment in commercial energy schemes, ClimateXChange, http://www.climatexchange.org.uk/files/7114/2132/9219/Supporting_Community_Investment_in_Commerical_Energy_Schemes_-_summary.pdf

Vento Ludens (2012). Securing the benefits of windpower in Scotland: a new concept for community benefit provision. <u>http://www.all-energy.co.uk/_novadocuments/28619</u>