

Brian Berg

Building Environmental Scientist Brian.Berg@branz.co.nz

BUILDING ENERGY EFFICIENCY

Focus of this talk

Challenge your thoughts on energy efficiency...

- People are more important than energy
- Consumers need to demand comfortable & healthy homes

Structure of the talk

- Overview of the performance of our building stock
- Key design/science topics behind comfortable & energy efficient homes

About Me

- Building Environmental Scientist
- Masters of Building Science from the Victoria University of Wellington
- Key Research Areas:
 - Building Simulation
 - Building Information Modelling (BIM)
 - Whole Building Life Cycle Assessment (LCA)
- Current Research Projects Include:
 - The Quantifiable Evidence of Building Beyond Code
 - Development of a Best Practice Thermal/Energy Simulation Guide for Building Designers

The Building Research Association of New Zealand (BRANZ)

Better Buildings Through Research-Driven Leadership

Our objective is to support industry through provision of robust analysis, modelling, forecasting, evidence and advice so we are building better for New Zealand.

Current BRANZ Research

People Focus

- The choice to exceed building code
- Who benefits from exceeding the minimum?

Science Focus

 The quantifiable evidence of building beyond code

The Need For Building Energy Efficiency

- Building sector is responsible for ~20% of NZ's energy-related Green House Gas emissions
- Majority of buildings that will be in existence in 2050 have already been built.

How Energy Is Used In Buildings

Electricity End Uses

Commercial Office Buildings

Residential Buildings

Figure 63 Page 51
Building Energy End-use Study (BEES) Part 1: Final
Report (Building Energy End-use Study (BEES) No.
BRANZ Study Report 297/1)

Figure 6 Page 9
Energy use in New Zealand households: final report on the household energy end-use project (HEEP)'. BRANZ Study Report 221. Building Research Association of NZ Ltd, Judgeford, New Zealand.

An Energy Efficient Home Is...

Passive House Standards:

- Annual heating and cooling <15 kWh/m² per year
- Total energy consumption for heating, hot water and electricity <120 kWh/m² per year

HEEP House = NZ :

Heating ~20kWh/m²

...But It Is Not Necessarily A Comfortable Or Healthy One

	Mean temperatures (°C)				
Room	Morning	Day	Evening	Night	
Living room	13.5	15.8	17.8	14.8	
Bedroom	12.6	14.2	15.0	13.6	
Ambient	7.8	12.0	9.4	7.6	

Performance of New NZ Homes

Auckland House's Annual Space Heating Energy Use kWh/m²

Figure 5 Page 17 BRANZ Study 2015 -Measuring our sustainability progress: Benchmarking New Zealand's new detached residential housing stock

Amount of Time per Year Living Room Spaces are within Comfortable temperatures (from 7am-11pm 18-25°C) with no mechanical heating/cooling

	NOW Home® Random mea		n mean		
Location	hrs/yr	% of daytime	hrs/yr	% of daytime	
Auckland	5652	97%	4877	84%	
Hamilton	5299	91%	4099	70%	
Christchurch	4419	76%	3248	56%	

Table 10 Page 25 BRANZ Study 2015 -Measuring our sustainability progress: Benchmarking New Zealand's new detached residential housing stock

Future Performance of New NZ Homes

YEAR	OVERHEATING # hours/day for Summer Months
2012	1 hour 20 mins
2030	2 hours 9 mins
2080	4 hours 43 mins

Why Spaces Overheat?

- Lack of cross ventilation
- Lack of insulation
- No or poor location of summer north and west shading
- Too much unshaded glazing

An Energy Efficient Home: Performance

Criteria

Reticulated Energy Use

Climate Zone 1: Auckland

- New homes 5800 kWh/yr
- Existing homes: 6200 kWh/yr

Climate Zone 2: Wellington

- New homes 6300 kWh/yr
- Existing homes: 7300 kWh/yr

Climate Zone 3: South Island

- New homes 7300 kWh/yr
- Existing homes: 8400 kWh/yr

Indoor Environmental Quality

Average Temperature

- Living room 5-11pm >18°C
- Bedroom 11pm 7am >16°C

Average Relative Humidity

- Living room 5-11pm in winter 40-70%
- Bedroom 11pm 7am in winter 40-70%
- Surface relative humidity <80% year round

An Energy Efficient Home

The building code is a minimum standard...

...we can build better

New Zealand Building Code:

- H1 Energy Efficiency
 - Sets Minimum Insulation levels e.g. Thermal Resistance (R-value m² °C/W) for Auckland Climate:
 - Roof R2.9
 - Walls R1.9
 - Floor R1.3
 - Windows R0.26
- E3 Internal Moisture
- G4 Ventilation
 - Net Openable Window Area >= 5% of the Floor Area

An Energy Efficient Home: Thermal Envelope

Thermal Resistance (R-values): A measure of resistance to the flow of heat. m² • °C/W. **The higher the R-value the better.**

Construction R-value: The R-value of a typical area of a building element.

Framing timber	Insulation material R-value					
	1.8	2.0	2.2	2.4	2.6	2.8
	Construction R-value					
studs 600, dwangs 800 (14%)	1.9	2.0	2.1	2.2	2.3	2.4
studs 600, dwangs 600 (16%)	1.8	1.9	2.0	2.1	2.2	2.3
studs 400, dwangs 800 (1.8%)	1.8	1.9	2.0	2.1	2.2	2.2
studs 400, dwangs 600 (20%)	1.8	1.9	1.9	2.0	2.1	2.2
(22%) framing ratio	1.7	1.8	1.9	2.0	2.0	2.1
(24%) framing ratio	1.7	1.8*	1.9	1,9	2.0	2.0

Notes

- All insulants should be placed against wall underlay without pushing the underlay into the cavity
- R3.0 is the highest practicable R-value of common insulation materials that can be used with 90 mm studs

An Energy Efficient Home: Thermal Envelope

BRANZ modelling shows:

Thermally broken aluminium window frames with Low E IGU's adds ~\$4000 to a standard 'spec' house (at 20°C

indoors) and reduces heat loss by

22-30% in Wellington

27-36% in Auckland

An Energy Efficient Home: Airtightness

Infiltration rates (air changes per hour) for various airtightness categories

- Draughty (pre-1960s house)
 = 0.9 ac/h
- Leaky (post-1960 house with some strip lining) = 0.7 ac/h
- New Houses 0.1-0.5 ac/h

Source: http://proclima.co.nz/air-movement-infiltration

An Energy Efficient Home: Internal Moisture

Moisture Sources:

 3 bedroom House 4 Occupants = 14L/day (ASHRAE Standard 160-2009)

Moisture Sources by Activity (BRANZ, 2005):

- Dishes 1.0L/day
- Cooking Gas 3.0L/day
- Clothes Washing 0.5L/day
- Clothes Drying Unvented Drier 5.0L/load
- Showers/Baths 1.5L/day
- People Breathing:
 - Sleeping 7hrs 0.14L/person
 - Active 0.2L per hour per person

An Energy Efficient Home: Ventilation

How and when to ventilate to manage moisture levels?

- Heat the house
- Flush ventilation and achieve a near full air exchange of the house in about 10–15 minutes
- Morning is the best time

Tools for Building Energy Efficient Buildings

Design Tools

Whole Building Simulation

EnergyPlus - FREE

FREE

LBNL THERM 7.4 & WINDOW 7.4 FREE

Actual Performance Tools

Post Occupancy
Evaluation (POE)

– Building
Occupant Survey

Energy Auditing

Temperature & RH% Sensors

Blower Door TestAir Tightness

Thermal Imagery

Brian Berg
Building Environmental Scientist
Brian.Berg@branz.co.nz

How can You Design OR Demand An Energy

Efficient Home?

FREE

2nd Edition

UNDERPERFORMING

CURRENT NEW ZEALAND BUILDING CODE

HIGH PERFORMING

VERY HIGH PERFORMANCE

WORLD LEADING SELF SUFFICIENT

1* 2* 3* 4* 5* 6* 7* 8* 9*

http://www.homestar.org.nz/

http://www.branz.co.nz/cms displa y.php?st=1&sn=292

http://www.level.org.nz/

Designing Comfortable Homes GUIDELINES ON THE USE OF GLASS, MASS

Brian Berg Building Environmental Scientist Brian.Berg@branz.co.nz

http://www.cominghometoconcrete.co. nz/portals/170/files/Designing Comfor table_Homes.pdf

The Take Home Message

Comfortable homes don't have to be just for grand designs

Beacon Pathway's NOW Home®
New Lynn 146m² ~\$214,000 Build Cost (2008)

