WIND - NEW ZEALAND'S ENERGY

Wind Energy in NZ Presentation to The Energy

Economics Summer School

Grenville Gaskell, NZ Wind Energy Association February 2019

Contents

- > About NZWEA
- > A Historical Perspective
- > Advantages of Wind Power
- National and International Trends
- > Environmental Impacts
- > An Operational View
- > Climate Change
- Domestic and Commercial Wind Turbines
- > Summary

About NZWEA

- Established 1997
- An industry association
 - Promotes the development of wind as a reliable, sustainable, clean and commercially viable energy source
 - Policy & regulatory advocacy, public awareness and industry development
 - Represents around 40 companies:
 - Generators and developers
 - Turbine manufacturers, equipment suppliers, consultants
- Utility scale generation

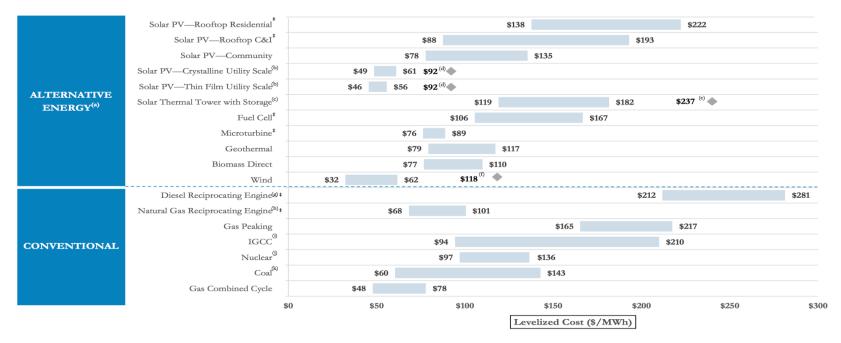
Wind Energy, An Historical Perspective

- Internationally
 - 500 to 900 A.D used for pumping water
 - 1890's pumping water and electricity
 - 1980's first large scale wind farms
 - 1991 first off shore wind farm
 - 2002 first 3MW wind turbine
- New Zealand
 - 1970's research commenced
 - 1980's recognition of commercial opportunities
 - 1990's first turbines and commercial deployment
 - 2004 first grid connected wind farm

Why Wind?

Renewable - produces no greenhouse gases

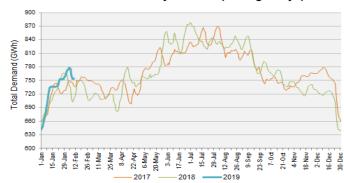
	Tonnes C02-e per GWh
Coal	630
Gas	455
Geothermal	115


- Low investigation costs
- Cheapest form of new generation and scalable
- Consistent resource
 - Variable but seasonally reliable
 - Spatial diversity smooths output
- Synergies with hydro generation and NZ demand
- Strong public support

The Cost advantage of Wind

Unsubsidized Levelized Cost of Energy Comparison

Certain Alternative Energy generation technologies are cost-competitive with conventional generation technologies under some scenarios; such observation does not take into account potential social and environmental externalities (e.g., social costs of distributed generation, environmental consequences of certain conventional generation technologies, etc.), reliability or intermittency-related considerations (e.g., transmission and back-up generation costs associated with certain Alternative Energy technologies)



- Next NZ wind farm \$60+ MWh
- Benefits from economies of scale and innovation

Wind Right for NZ Market

- All renewables positive but...
- Morning and evening demand peaks
 New Zealand Electricity Demand (Rolling 7 days)
- Plus higher winter demand profile
- Scale and spatial diversity key to managing wind's variability
- Transpower on wind "a low cost source with stronger alignment with winter peaks"
- On solar "produces the least energy when NZ needs it most such as during cold, dark winter months"

Mostly, We Like Wind but...

- 76% of support for wind (EECA survey 2011)
- Increasing number of community wind initiatives
- Visual impacts and noise the main issues
- Challenge is for developers and operators to be good neighbours

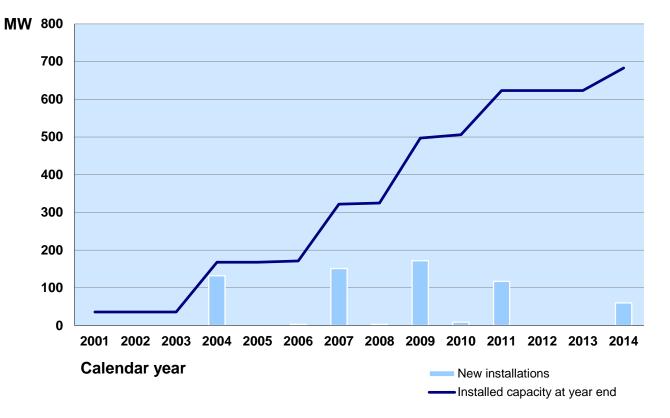
Four Key Stages:

- 1900 80s: Hydro
- 1970s 2000s: Thermal 1990s - 2020: Geothermal
- 2000s 2030+ is Wind

Trends in NZ

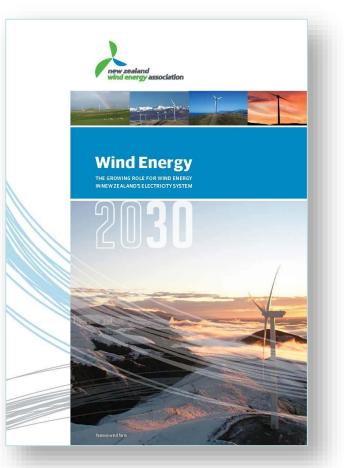
- Historic generation trends now in decline
 - 40% of gas produced in NZ
 - 50% of coal used for electricity generation
- NZ baseload geothermal & combined cycle gas plants
- Renewables are increasing
 - 72% in 2000
 - 83% in 2017
 - potentially 90%+ 2035
- Thermal plant closures in 2015
 - Otahuhu 400MW
 - Southdown 130MW
- Future of TCC and Huntly?

NZ - Wind Generation Today



- 19 wind farms
- 690 MW generating capacity
- Around 6% of NZ's annual generation
- 2500MW consented
- Consent challenges with new technology
- Unlikely all will be built

Wind Growth

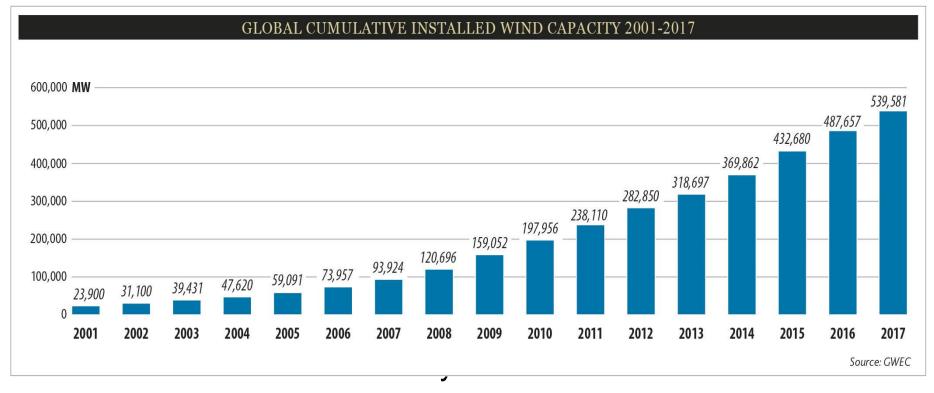


- No major new development since 2014
- Market now talking about needing new capacity

www.windenergy.org.nz

Vision: Wind Energy 20% by 2035

- 690MW now to 3100MW in 2035
 - Requires 150MW / \$300m investment p.a
- 20% wind energy
 - NZ has excellent sites
 - Fits with the existing electricity system
 - Will deliver economic benefits
 - Wind can replace the majority of NZ's gas – fired baseload generation


International Trends

- The energy transition is gathering momentum
 - 53GW new capacity in 2017
 - Global capacity 540,000 MW
- Key growth markets China, US and Germany
- Wind 17% of EU's generation capacity
 - 51% new EU generation was wind power
- Coal use in the US is the lowest since 1983
- Wind energy on track to supply 20% of US electricity by 2030
- Australia has 1,500 MW of new wind build
- The corporate imperative renewable ppa's

Spectacular Global Growth

- 540GW = 60X NZ's total installed generation
- Forecast 790 880 GW by 2020
- 1,700 2,100 GW by 2030

A long way in a short time...

- 13 fold increase in capacity in 14 years
- 4 to 6 fold reduction in costs
- Ongoing innovation in blades and software

1993: 0.225MW \$13m/MW

Improving performance

<u>Wind</u> Tropical/strong wind	3.0 MW • First Vestas 3 MW WTG	3.3 MW • Upgrade to 3.3 MW nominal rating • New rotors: 105m, 117m, 126m	 Upgrade to 3.45 MW nominal rating New rotor: 136 m Up to 3.6 MW Power Optimised Mode 	 3.45/4.2 MWV New rotor: 150 m New segment: IEC T-class Up to 4.2 MW Power Optimised Mode Platform naming: 4MW 	NEW in 2017 4.2MW & 150 Rotor
High Wind	V90-3.0 MW™	V105-3.3 MW™	V105-3.45 MW™	V117-4.2 MW™ V105-3.45 MW™	Double digit AEP gains across wind classes
		V112- 3.3 MW ™	V112-3.45 MW™	V112-3.45 MW™ V117-3.45 MW™	
Medium Wind	V112-3.0 MW™	V117-3.3 MW™	V117-3.45 MW™ V126-3.45 MW™	V126-3.45 MW™ V136-3.45 MW™	Up to
Low wind		V126-3.3 MW™	V136-3.45 MW™	V136-4.2 MW™ V150-4.2 MW™	56% AEP
Year of Announcement	2010	2012/13	2015	2017	increase since 2010*

www.windenergy.org.nz

Environmental Impacts

- RMA key to the sustainable management natural and physical resources
- Construction Phase
 - Earthworks
 - Visual
 - Noise
 - Ecology
 - Transportation / traffic effects
- Operation Maintenance Effects
 - Visual and Landscape
 - Noise
 - Ecology
 - Productive land

Operational Challenges

- Health and safety
- Wind speed
- Maintenance windows
- Market and rules
- Landowner and stakeholder management
- Ensuring compliance with consents
- Changing regulatory environment impacting investment decisions
 - Transmission / distribution pricing

Addressing Climate Change

- Gross emissions in 2015 were 80 Mt C02-e
 - Increase of 24% since 1990
 - Energy sector 33 Mt (41%)
- Energy Sector
 - Transport 14 Mt
 - Manufacturing 5 Mt
 - Electricity generation 5 Mt (11%)
- Net emissions increased 64% since 1990
- Target 30% below 2005 by 2030 = savings of 20+ Mt p.a
- Cost without mitigations at \$50/t = \$1B+ p.a
- Zero Carbon Bill Net zero by 2050 ?

The Opportunity

- Options are to buy or domestic mitigation
 - Mitigation = reduce emissions or LULUCF
 - Improving energy efficiency a given
- NZ's electricity generation opportunity
 - Already 83% renewable
 - Our hydro, wind and geothermal resources are unique
 - Significant capacity to increase renewable generation
- Leverage our renewable opportunities to:
 - Replace thermal fuels used in electricity generation
 - Electrify the light vehicle passenger
 - Replace thermal fuels used to provide industrial heat
- Focus and investment required

Domestic Wind

- Several types
 - horizontal as per most windfarms
 - Vertical
 - Generally 5 kW or smaller
- Cost around \$10k + per kW
- Difficult in urban areas
 - Wind turbulent, weak and erratic
- Require speed of 4.5m/second
- Tower mounting improves performance
- Best for rural areas with consistent wind speed
- Community wind has possibilities

A Way Forward

- Wind a key technology to decarbonise the NZ economy
- Big wind with spatial planning to improve variability
- Community and industrial solutions
 - Integrated with other technologies solar and batteries
 - Promotes regional growth and support for wind
 - Utilises NZ's abundant resource
- Requires a change to planning instruments
 - Recognising the national importance of renewable
 - More directive standards
 - Differentiation for scale and impacts

Wind is Now...

From a science experiment 25 years ago wind offers an amazing opportunity

