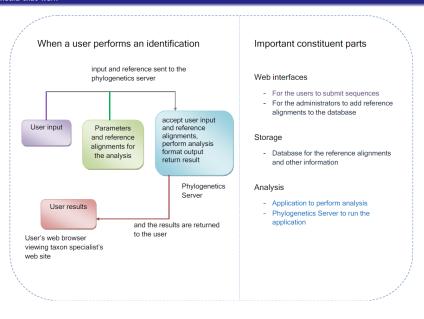
Refactoring DNA Surveillance Species identification with DNA

Waltraud Sichart Supervisor: Howard Ross

December 10, 2009

Overview

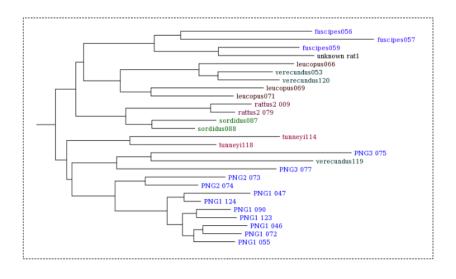

- Introduction
 - What is DNA Surveillance
 - How should that work
- 2 The Java TreeBuilder application
 - Program Sequence
 - The Result Tree
- The database behind the web site
 - The MySQL database
 - The database model
- 4 The DNA Surveillance (Admin) web site
 - About
 - Design Points
- 6 Add-on
 - Future prospects

DNA Surveillance should be a tool, that can be inserted into other web sites (taxon specialist groups in particular),

xternal web site		DNA Surveillance
DNA Surveillar tool	nce	utgroup da control region send result by email Sequence
		Email: Submit

where users submit sequences and get a tree with different species as result.

The look and feel of the whole page is under the control of the taxon specialist or their assistant.


Program sequence for analysis

- Build profile alignment with ClustalW
 - Set information for the profile alignment
 - Create command as String array and execute it
 - Wait for process to finish

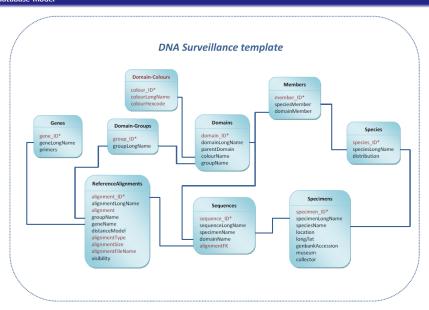
Program sequence for analysis

- ▶ Build profile alignment with ClustalW
 - Set information for the profile alignment
 - Create command as String array and execute it
 - Wait for process to finish
- Create distance matrix and neighbour joining tree
 - Read in the new alignment file and choose a distance model
 - Build a neighbour joining tree and root it
 - 3 Add tip colours as attributes to the tree
 - Show tree and save it as .tre file

The Result Tree

Reasons of setting up a MySQL database

- + Setting up the database with phpMyAdmin
 - Very fast and simple to set up
 - Easy to maintain
 - → Even without/less MySQL knowledge


Reasons of setting up a MySQL database

- + Setting up the database with phpMyAdmin
 - Very fast and simple to set up
 - Easy to maintain
 - → Even without/less MySQL knowledge

InnoDB as table storage engine

- + Foreign keys and relationship contrains
- Different relationships between tables, so it takes more time to design the data models

The database model

The web site is the interface by which administrators interact with the database

It should be ...

About

- easy to use and everything should be good readable
- flexible so it can be customized to fit the user's individual needs
- usable for all databases that were created of a specific template
- secure to protect the stored information

This aims were achieved with various design points ...

Colours and text

- Colours with high contrast for readable text so that the page is easy to use
- Mostly used font size is 14pt to assure good readability for serif fonts and sans serif fonts

Colours and text

- Colours with high contrast for readable text so that the page is easy to use
- Mostly used font size is 14pt to assure good readability for serif fonts and sans serif fonts

Layout

- Clearly arranged layout to facilitate the usage
- Dynamic table layout to fit various numbers of columns and rows
- Diffent row colours for odd and even rows to increase readability

Flexibility

- All layouts were created using cascading style sheets
- All Elements have their width defined in percentages to match all screen resolutions
- The to-use database name is recorded in the user database and is loaded after the user validation

Flexibility

- All layouts were created using cascading style sheets
- All Elements have their width defined in percentages to match all screen resolutions
- The to-use database name is recorded in the user database and is loaded after the user validation
- ightarrow The interface can be used for all databases that were created of a specific template

Flexibility

- All layouts were created using cascading style sheets
- All Elements have their width defined in percentages to match all screen resolutions
- The to-use database name is recorded in the user database and is loaded after the user validation
- ightarrow The interface can be used for all databases that were created of a specific template

Security measures

- Users get their own username, password and a database name
- The password in encrypted using the md5 algorithm with a salt
- Only the encrypted password is stored in the database

Co to wob site

Future prospects

Web site

• Import function for alignment details

Future prospects

Web site

Import function for alignment details

Java application

- Get information about reference alignments, distance models and tip colours out of database
- Rooting for an outgroup

Acknowledgments

Howard Ross Pui Shan Wong Bioinformatics Institute

Introduction The Java TreeBuilder application oo The database behind the web site

Acknowledgments

Appendix

DNA Surveillance Administration)

Species identification with DNA

Control

home logout To Database

Layout

look and feel (admin)

Database domain-groups

domains species specimens genes reference alignments Please log in to DNA Surveillance Admin

Username: Password:

Log in

Appendix

Database

domain-groups
domains
species
specimens
genes
reference alignments

DNA Surveillance Administration)

Species identification with DNA

Control Select a database home logout To Database Layout Look and feel (admin)

Species identification with DNA

Control

home logout To Database

Layout

look and feel (admin)

Database

domain-groups domains species specimens genes reference alignments

Welcome to DNA Surveillance admin

Note: This site uses cascading style sheets, cookies and javascript.

Species identification with DNA

Control

home logout To Database

Layout

look and feel (admin)

Database domain-groups

domains species specimens genes reference alignments

specimenLongName	speciesName	location	long/lat	genbankAccession	museum	collector
□ seq1	Bos taurus	Mexico	120W15N	NC_006853	ROM	HAR
seq2	Ovis aries	Mexico	120W15N	NC_001941	ROM	HAR
□ seq3	Capra hircus	Mexico	120W15N	NC_005044	ROM	HAR
□ seq4	Equus caballus	Mexico	120W15N	NC_001640	ROM	HAR
seq5	Equus asinus	Mexico	120W15N	NC_001788	ROM	HAR
□ seq6	Lama glama	Mexico	120W15N	AY535253	ROM	HAR
seq7	Lama pacos	Mexico	120W15N	AJ566364	ROM	HAR
□ seq8	Camelus bactrianus	Mexico	120W15N	NC_009629	ROM	HAR
□ seq9	Camelus dromedarius	Mexico	120W15N	NC_009849	ROM	HAR
seq10	Sus scrofa	Mexico	120W15N	NC_000845	ROM	HAR
seq11	Canis familiaris	Mexico	120W15N	NC_002008	ROM	HAR

Options

Add specimens | Edit specimens | Delete specimens

Import specimens Show table structure

Go back to species Go to genes Finish

Species identification with DNA

Control	Field	Type	Value
Control	specimenLongName	varchar(100)	seql
home	speciesName	varchar(100)	Bos taurus v
logout To Database	location	text	Mexico
	long/lat	text	120W15N
Lavout	genbankAccession	varchar(50)	NC_006853
Layout	museum	varchar(50)	ROM
look and feel (admin)	collector	text	HAR

Database

domain-groups domains species specimens genes reference alignments Submit Cancel

Appendix

DNA Surveillance Administration)

Species identification with DNA

Control

Import Specimens from file:

home logout To Database All entries in the file must be tab-separated and the last entry in each line must be a semicolon.

Browse...

The default entries are read in serial in the order:

specimen name TAB species name TAB location TAB long/lat TAB genbank accession TAB museum TAB collector TAB;

If more columns are added to the table please ensure that the type of the import fields is correct, else errors occure (i.e. INT only allows numeric input)

look and feel (admin)

+ Notes ...

Database

Select textfile and click on submit button-

domain-groups domains species specimens genes reference alignments

Submit Cancel

Species identification with DNA

Control Structure of Table Specimens Field Type Null Action home specimenLongName varchar(100) NO logout To Database speciesName varchar(100) NO location × text Layout × long/lat text NO × look and feel (admin) genbankAccession varchar(50) × museum varchar(50) Database collector text NO × domain-groups domains species specimens genes Check All / Uncheck All With selected: X reference alignments Fig. Add field ● At End of Table ○ After speciesName ∨ Go

Go back to table

Fields without checkboxes are fixed columns and can not be edited or dropped.

Each field name must be unique.

Appendix

DNA Surveillance Administration)

Species identification with DNA

Control

home logout To Database

Layout

look and feel (admin)

Database

domain-groups domains species specimens genes reference alignments

Current reference				
alignmentLongName	groupName	geneName	distanceModel	visibility
☐ References	TypesofAnimals	cytochrome B	HKY	public

Options

Add alignment | Edit alignment | Delete alignment

Go back to genes Finish

Species identification with DNA

Control

home logout To Database

Layout

look and feel (admin)

Database

domain-groups domains species specimens genes

genes reference alignments

Alignment Details

Discription ...

Current alignment for reference alignment: 'References'

>seq1

ATG---

>seq2

<- Back

Appendix

DNA Surveillance Administration)

Species identification with DNA

Control

home logout To Database

Layout

look and feel (admin)

Database

domain-groups domains species specimens genes reference alignments Edit sequence details to alignment 'References '

Set source specimen and domain for every sequence in the alignment.

Show current alignment

sequence name	specimen	domain
seql	seq1 v	Mammal
seq2	seq2 v	Mammal V
seq3	seq3 V	Mammal
seq4	seq4 V	Mammal V
seq5	seq5 V	Mammal
seq6	seq1 v	Mammal V
seq7	seq1 v	Mammal
seq8	seq1 v	Mammal V
seq9	seq1 v	Mammal
seq10	seq1 v	Mammal V
seq11	seq1 v	Mammal

▶ back