The last universal common ancestor

Relationship between genomic GC content and optimal growth temperature in Bacteria

Norbert Kopocz; Supervisor: Allen Rodrigo

December 9, 2009

- (目) - (日) - (日)

Table of contents

- Musto et al.
- Wang et al.
- ideas

2 Material

- data
- 3 Method
 - tree, ancestral states and delta values
- 4 Results and Analyses
 - correlation

Musto et al. Wang et al. ideas

Why is the relationship between genomic G+C content and the optimal growth temperature so interesting?

• environmental temperature based mutation of nucleotides

Musto et al. Wang et al. ideas

Why is the relationship between genomic G+C content and the optimal growth temperature so interesting?

• environmental temperature based mutation of nucleotides

Introduction

Material Method Results and Analyses Conclusion Musto et al. Wang et al. ideas

background

source: http://en.wikipedia.org/wiki/File:AT-GC.jpg

Norbert Kopocz; Supervisor: Allen Rodrigo The last universal common ancestorRelationship between geno

Musto et al. Wang et al. ideas

publication by

.... Musto et al.

- correlation over all species
- no positive correlation found
- R = -0.167
 p-Value: < 0.00001
 95% confidence intervall:
 -0.238 to -0.094

Introduction

Material Method Results and Analyses Conclusion Musto et al. Wang et al. ideas

publication by

.... Musto et al.

analyzing families of prokaryotes:

- 20 prokaryotic families
- 15 out of them with positive correlation
- but only 8 with statistically significance

all in all: " $\mathsf{T}_{\mathsf{opt}}$ is one of the factors that influences genomic GC in prokaryotes"

イロト イポト イヨト イヨト

Introduction Material

Results and Analyses

Method

Musto et al. Wang et al. ideas

publication by

.... Musto et al.

analyzing families of prokaryotes:

- 20 prokaryotic families
- 15 out of them with positive correlation
- but only 8 with statistically significance

all in all: $"\,\mathsf{T}_{\mathsf{opt}}$ is one of the factors that influences genomic GC in prokaryotes"

イロト イポト イヨト イヨト

Introduction Material

Method Results and Analyses Conclusion Musto et al. Wang et al. ideas

publication by

.... Wang et al.

• "no significance"

analyzing a dataset of 1065 species:

- separating into 5 temperature groups
 - $\bullet\,$ less than 30 $^\circ\text{C}$
 - 30 $^\circ C$ to 40 $^\circ C$
 - $\bullet~40~^\circ C$ to 50 $^\circ C$
 - 50 $^\circ\text{C}$ to 80 $^\circ\text{C}$
 - $\bullet\,$ greater than 80 $^\circ C$

Introduction Material

Results and Analyses

Method

Conclusion

Musto et al. Wang et al. ideas

publication by

.... Wang et al.

• results:

- average genomic GC is highest in the lowest temperature group (less than 30 °C)
- significant correlation only in low temperature range

Temp. group [°C]	R	p-value
<= 30	0.29	$< 10^{-6}$
30-40	-0.38	$< 10^{-6}$
40-50	0.14	0.41
50-80	-0.21	0.12
>= 80	0.23	0.25

Introduction

Material Method Results and Analyses Conclusion Musto et al. Wang et al. ideas

overview

two different ideas:

- consideration of observed values (Musto et al. and Wang et al.)
- our idea:
 - find a correlation between: evolutionary change in GC content and evolutionary change in optimal growth temperature

Introduction

Material Method Results and Analyses Conclusion Musto et al. Wang et al. ideas

overview

why do we consider the evolutionary change in both values?

- different species different lifestyle:
 - GC poor e.g.: pathogens or symbionts [1] and species with small genomes [2]
 - GC rich: large genomes [1]

EP Rocha, A. Danchin, Base composition bias might result from competition for metabolic resources
 N.A. Moran, Microbial Minimalism: Genome Reduction in Bacterial Pathogens

	Introduction Material Method Results and Analyses Conclusion	data	
Data			

- 706 species (Archaeabacteria and Prokaryotes)
- genomic GC content and optimal growth temperature
- 16S ribosomal RNA sequences from NCBI

tree, ancestral states and delta values

creating tree

• alignment over 706 16S rRNA sequences

• editing alignment using program Squint

tree, ancestral states and delta values

creating tree

- alignment over 706 16S rRNA sequences
- editing alignment using program Squint
- creating maximum likelihood phylogenetic tree

tree, ancestral states and delta values

creating tree

- alignment over 706 16S rRNA sequences
- editing alignment using program Squint
- creating maximum likelihood phylogenetic tree

tree, ancestral states and delta values

ancestral states

- ancestral states: squared change parsimony method
 - ancestral states for opt. growth temperature
 - and genomic GC content
- Furthermore: program to calculate 16S rRNA GC content

Norbert Kopocz; Supervisor: Allen Rodrigo

tree, ancestral states and delta values

delta values

- set ancestral state values on right position in tree
- calculating delta values using java, jebl library

Norbert Kopocz; Supervisor: Allen Rodrigo The last universal cor

correlation

Δ genomic GC vs. Δ temp

over all ancestral states:

correlation:

- R = 0.104
- p-value: < 0.0001
- 95% confidence intervall: 0.052 to 0.155
- degrees of freedom: 1408

correlation

Δ genomic GC vs. Δ temp

over internal nodes:

correlation:

- R = 0.068
- p-value: 0.06966
- 95% confidence intervall: -0.0055 0.14158
- degrees of freedom: 702

3

Norbert Kopocz; Supervisor: Allen Rodrigo

correlation

Δ genomic GC vs. Δ temp

over external nodes:

correlation:

- R = 0.128
- p-value: 0.0006
- 95% confidence intervall: 0.055 to 0.2
- degrees of freedom: 704

3

Norbert Kopocz; Supervisor: Allen Rodrigo

correlation

Δ rRNA GC content vs. Δ temp

over all ancestral states (rRNA):

correlation:

- R = 0.094
- p-value: 0.0004
- 95% confidence intervall: 0.042 to 0.145
- degrees of freedom: 1408

3

Norbert Kopocz; Supervisor: Allen Rodrigo

correlation

Δ rRNA GC content vs. Δ temp

over internal nodes (rRNA):

correlation:

- R = 0.115
- p-value: 0.002
- 95% confidence intervall: 0.0416 to 0.1874
- degrees of freedom: 702

3

Norbert Kopocz; Supervisor: Allen Rodrigo

correlation

Δ rRNA GC content vs. Δ temp

over external nodes (rRNA):

correlation:

- R = 0.12
- p-value: 0.001
- 95% confidence intervall: 0.0464 to 0.1919
- degrees of freedom: 704

3

• new way to figure out a relationship using:

- phylogenetic background
- evolutionary change in both values
- significance

??Relationship??

- Yes, we can say there is a relationship between:
 - $\bullet\,$ genomic GC content and T_{opt}
 - $\bullet~rRNA~GC$ content and T_{opt}

Acknowledgements

Thank you very much for your attention!

- Allen Rodrigo
- Peter Tsai
- Sibon Li
- Kevin Chang
- Bioinformatics Institute

our idea:

distances

developing a permutation-test of the distances to the origin

Norbert Kopocz; Supervisor: Allen Rodrigo The last universal common ancestorRelationship between geno

how works my permutation test?

Norbert Kopocz; Supervisor: Allen Rodrigo

- permutation test of the distances to the origin
- distance to origin: $d = \sqrt[2]{\Delta GC^2 + \Delta Temp^2}$ • S = $\frac{\overline{d}_{IV}}{\overline{d}_{IIIIII}}$

Norbert Kopocz; Supervisor: Allen Rodrigo The last universal common ancestorRelationship between geno

• number of permutations: N = 500

- observed value for distance proportion S = 0.909
- \bullet significant for α = 1 %

Norbert Kopocz; Supervisor: Allen Rodrigo