Overview	About SOMs	Introduction 0000	SOMTHING App.	Benchmark 000	Conclusion

High dimensional Data visualization and clustering using Self Organizing Maps

Oliver Bernhardt oliver.bernhardt@fh-hagenberg.at

Department of Medical- and Bioinformatics Upper Austria University of Applied Sciences Softwarepark 11, 4232 Hagenberg, Austria

May 26, 2010

1/16

Overview	About SOMs	Introduction 0000	SOMTHING App.	Benchmark 000	Conclusion
Overv	iew				

Overview

- About Self Organizing Maps (SOMs)
- Introduction to SOMs
 - Topology
 - Basic Algorithm
- SOMTHING Application
- Benchmark Analysis

Overview	About SOMs	Introduction 0000	SOMTHING App. 0000	Benchmark 000	Conclusion
About	t SOMs				

What are Self Organizing Maps

Dr. Teuvo Kohonen

- Invented by Dr. Teuvo Kohonen
- Unsupervised Learning Process
- Inspired by the Human Brian
- Grid of Neurons trained by Stimuli
- Visualises High Dimensional Data as a 2D Map.

"one of the most significant inventions in computational science"

(|EEE.org 2010)

Overview	About SOMs	Introduction ●○○○	SOMTHING App. 0000	Benchmark 000	Conclusion
Introc	luction				

Data Types

Input Data Entry

- An Item of the *d*-Dimensional Input Data Space
- Represented by an Input Data Vector of Size d.

Neuron

- A Node in a Grid connected to a specified amount of Neighbours.
- Containing a Weight Vector of Size d.
- Representing any point of the d-Dimensional Input Data Space.

Overview	About SOMs	Introduction ●○○○	SOMTHING App.	Benchmark 000	Conclusion
Introd	luction				

Data Types

- Input Data Entry
 - An Item of the *d*-Dimensional Input Data Space
 - Represented by an Input Data Vector of Size d.
- Neuron
 - A Node in a Grid connected to a specified amount of Neighbours.
 - Containing a Weight Vector of Size *d*.
 - Representing any point of the *d*-Dimensional Input Data Space.

Overview	About SOMs	Introduction 0000	SOMTHING App. 0000	Benchmark 000	Conclusion
Introd	luction				

Grid Topology

• Satisfying Data Structure Preservation

Complex Implementation

< ロ > < 同 > < 回 > < 回 >

 Good Data Structure Preservation

Overview	About SOMs	Introduction 0000	SOMTHING App. 0000	Benchmark 000	Conclusion
Introc	luction				

Grid Topology

- Simple Implementation
- Satisfying Data Structure Preservation

Complex Implementation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 Good Data Structure Preservation

э

Overview	About SOMs	Introduction ○○●○	SOMTHING App.	Benchmark 000	Conclusion
Traini	ng				

Step 1 Create a Grid of $n \cdot m$ Nodes (Neurons).

Step 2 Initialise Random Weight Vectors for each Neuron.

Training

- Step 1 Select an Entry of the Input Data Space by Chance.
- Step 2 Determine the Best Matching Unit (BMU).
- Step 3 Adjust Weight Vectors of the BMU and its Neighbours inside a certain Radius *r*.
- Step 4 Decrease the Radius r and the Learning Rate I.
- Step 5 Go Back to Step 1 until Training is done.

Overview	About SOMs	Introduction ○○●○	SOMTHING App.	Benchmark 000	Conclusion
Traini	ng				

Step 1 Create a Grid of $n \cdot m$ Nodes (Neurons).

Step 2 Initialise Random Weight Vectors for each Neuron.

Training

Step 1 Select an Entry of the Input Data Space by Chance.

Step 2 Determine the Best Matching Unit (BMU).

Step 3 Adjust Weight Vectors of the BMU and its Neighbours inside a certain Radius *r*.

Step 4 Decrease the Radius r and the Learning Rate I.

Step 5 Go Back to Step 1 until Training is done.

Overview	About SOMs	Introduction ○○●○	SOMTHING App.	Benchmark 000	Conclusion
Traini	ng				

Step 1 Create a Grid of $n \cdot m$ Nodes (Neurons).

Step 2 Initialise Random Weight Vectors for each Neuron.

Training

Step 1 Select an Entry of the Input Data Space by Chance.

- Step 2 Determine the Best Matching Unit (BMU).
- Step 3 Adjust Weight Vectors of the BMU and its Neighbours inside a certain Radius *r*.
- Step 4 Decrease the Radius r and the Learning Rate I.
- Step 5 Go Back to Step 1 until Training is done.

Overview	About SOMs	Introduction ○○●○	SOMTHING App.	Benchmark 000	Conclusion
Traini	ng				

Step 1 Create a Grid of $n \cdot m$ Nodes (Neurons).

Step 2 Initialise Random Weight Vectors for each Neuron.

Training

Step 1 Select an Entry of the Input Data Space by Chance.

- Step 2 Determine the Best Matching Unit (BMU).
- Step 3 Adjust Weight Vectors of the BMU and its Neighbours inside a certain Radius *r*.
- Step 4 Decrease the Radius r and the Learning Rate I.
- Step 5 Go Back to Step 1 until Training is done.

Overview	About SOMs	Introduction ○○●○	SOMTHING App.	Benchmark 000	Conclusion
Traini	ng				

Step 1 Create a Grid of $n \cdot m$ Nodes (Neurons).

Step 2 Initialise Random Weight Vectors for each Neuron.

Training

- Step 1 Select an Entry of the Input Data Space by Chance.
- Step 2 Determine the Best Matching Unit (BMU).
- Step 3 Adjust Weight Vectors of the BMU and its Neighbours inside a certain Radius *r*.

Step 4 Decrease the Radius r and the Learning Rate lStep 5 Go Back to Step 1 until Training is done.

Overview	About SOMs	Introduction ○○●○	SOMTHING App.	Benchmark 000	Conclusion
Traini	ng				

Step 1 Create a Grid of $n \cdot m$ Nodes (Neurons).

Step 2 Initialise Random Weight Vectors for each Neuron.

Training

- Step 1 Select an Entry of the Input Data Space by Chance.
- Step 2 Determine the Best Matching Unit (BMU).
- Step 3 Adjust Weight Vectors of the BMU and its Neighbours inside a certain Radius *r*.
- Step 4 Decrease the Radius r and the Learning Rate I.

Step 5 Go Back to Step 1 until Training is done.

Overview	About SOMs	Introduction ○○●○	SOMTHING App.	Benchmark 000	Conclusion
Traini	ng				

Step 1 Create a Grid of $n \cdot m$ Nodes (Neurons).

Step 2 Initialise Random Weight Vectors for each Neuron.

Training

- Step 1 Select an Entry of the Input Data Space by Chance.
- Step 2 Determine the Best Matching Unit (BMU).
- Step 3 Adjust Weight Vectors of the BMU and its Neighbours inside a certain Radius *r*.
- Step 4 Decrease the Radius r and the Learning Rate I.
- Step 5 Go Back to Step 1 until Training is done.

Overview	About SOMs	Introduction ○○○●	SOMTHING App.	Benchmark 000	Conclusion
Exam	ole				

Overview	About SOMs	Introduction 0000	SOMTHING App.	Benchmark 000	Conclusion
Examp	ble				

Overview	About SOMs	Introduction ○○○●	SOMTHING App.	Benchmark 000	Conclusion
Examp	ble				

Overview	About SOMs	Introduction 0000	SOMTHING App.	Benchmark 000	Conclusion
Examp	ole				

Overview	About SOMs	Introduction 0000	SOMTHING App.	Benchmark 000	Conclusion
SOM	THING				

SOMTHING Application

SOMTHING Application Main Window

Self Organised Mapping Tool using Hexagonal Interlaced Neuron Grids

Overview	About SOMs	Introduction 0000	SOMTHING App.	Benchmark 000	Conclusion
SOM	ΓHING				

Features

• SOM Visualisation Methods

- U-Matrix
- P-Matrix
- U*-Matrix
- Component Planes
- Hit Histogram
- Clustering
 - Hierarchical Clustering
 - SOM Clustering

Overview	About SOMs	Introduction 0000	SOMTHING App.	Benchmark 000	Conclusion
SOM	ΓHING				

Features

• SOM Visualisation Methods

- U-Matrix
- P-Matrix
- U*-Matrix
- Component Planes
- Hit Histogram
- Clustering
 - Hierarchical Clustering
 - SOM Clustering

Overview	About SOMs	Introduction 0000	SOMTHING App. ○○●○	Benchmark 000	Conclusion
SOM ⁻	ΓHING				

U-Matrix

U-Height = Total Euclidean Distances between a Neuron's Weight Vector to its Neighbours.

U-Matrix Visualisation

- Local Distances
- Bright Colors
 - Low U-Height
 - Similar to Neighbours
 - Cluster Centres
- Dark Colors
 - High U-Height
 - Different from Neighbours
 - Cluster Borders

Overview	About SOMs	Introduction 0000	SOMTHING App. ○○●○	Benchmark 000	Conclusion
SOM	THING				

U-Matrix

U-Height = Total Euclidean Distances between a Neuron's Weight Vector to its Neighbours.

U-Matrix Visualisation

- Local Distances
- Bright Colors
 - Low U-Height
 - Similar to Neighbours
 - Cluster Centres
- Dark Colors
 - High U-Height
 - Different from Neighbours
 - Cluster Borders

Overview	About SOMs	Introduction 0000	SOMTHING App. ○○●○	Benchmark 000	Conclusion
SOM	THING				

U-Matrix

U-Height = Total Euclidean Distances between a Neuron's Weight Vector to its Neighbours.

U-Matrix Visualisation

- Local Distances
- Bright Colors
 - Low U-Height
 - Similar to Neighbours
 - Cluster Centres
- Dark Colors
 - High U-Height
 - Different from Neighbours
 - Cluster Borders

Overview	About SOMs	Introduction 0000	SOMTHING App. ०००●	Benchmark 000	Conclusion
SOM	THING				

P-Matrix

P-Height = Pareto Density Estimation at the Neuron's representative point in the Input Data Space.

P-Matrix Visualisation

- Data Density Estimation
- Bright Colors
 - Low P-Height
 - Low Density
 - Outliers
- Dark Colors
 - High P-Height
 - High Density
 - Cluster Centres

Overview	About SOMs	Introduction 0000	SOMTHING App. ०००●	Benchmark 000	Conclusion
SOM	THING				

P-Matrix

P-Height = Pareto Density Estimation at the Neuron's representative point in the Input Data Space.

P-Matrix Visualisation

- Data Density Estimation
- Bright Colors
 - Low P-Height
 - Low Density
 - Outliers
- Dark Colors
 - High P-Height
 - High Density
 - Cluster Centres

Overview	About SOMs	Introduction 0000	SOMTHING App. ०००●	Benchmark 000	Conclusion
SOM	THING				

P-Matrix

P-Height = Pareto Density Estimation at the Neuron's representative point in the Input Data Space.

P-Matrix Visualisation

- Data Density Estimation
- Bright Colors
 - Low P-Height
 - Low Density
 - Outliers
- Dark Colors
 - High P-Height
 - High Density
 - Cluster Centres

Overview	About SOMs	Introduction 0000	SOMTHING App.	Benchmark ●○○	Conclusion
Bench	nmark				

Chainlink Dataset

- Common Clustering Benchmark
- 2 intertwined 3D Rings
- 500 Data Points per Ring
- unsolvable with K-Means or Hierarchical Clustering

Overview	About SOMs	Introduction 0000	SOMTHING App. 0000	Benchmark ○●○	Conclusion
Benchmark					

Overview	About SOMs	Introduction 0000	SOMTHING App. 0000	Benchmark ○○●	Conclusion
Bench	nmark				

Overview	About SOMs	Introduction 0000	SOMTHING App. 0000	Benchmark ○○●	Conclusion
Bench	nmark				

Not one Sample misclassified!

Overview	About SOMs	Introduction 0000	SOMTHING App.	Benchmark 000	Conclusion

Conclusion

Self Organising Maps are ...

- an unsupervised learning method
- a powerful approach to visualise very high dimensional data.
- an interesting alternative to usual Clustering Methods.

Overview	About SOMs	Introduction 0000	SOMTHING App. 0000	Benchmark 000	Conclusion

Questions?