
Introduction

Have you heard about the butterfly effect? The idea that the 
flap of a butterfly’s wings in Brazil could set off a tornado 
in Texas? 


This concept was discovered by Lorenz in the 1960s [2]. 
He illustrated it with a simple model of convection 
dynamics in the atmosphere, given by the vector field:


for the parameters⍴ = 28, β = 8/3 and σ = 10. When starting 
from two points arbitrarily close together, model (1) 
produces a flow that pushes these points far apart very 
quickly, even though both solutions lie on a butterfly-
shaped strange attractor (Figure 1), which is arguably the 
most famous example of a (classical) chaotic attractor.


Our research is focused on characterising and identifying 
possible parameter-dependent transitions to wild chaos, a 
new type of chaotic dynamics that can only arise in flows of 
dimension at least four.

Results and Future Work

The bifurcation diagram in Figure 3 is not yet complete. 
Inside the shaded region, there are qualitative changes in 
the dynamics of model (2).


For instance, consider the parameter points ★ and X in the 

enlargement in Figure 3. For ★, the attractor is a quasi-

periodic torus, whereas, for X, it is phase-locked (Figure 4).


🦋 Existence of an attracting invariant torus is not possible 
in the classical model (1).


🦋 Contrary to our expectation, wild chaos appears to 
originate at µ > 0 rather than at the homoclinic explosion 
at µ = 0.
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Figure 4. Projections of a quasi-periodic torus (top) for 

 = 13.074, and a phase-locked torus for  = 13.08 (bottom).


In both cases  = 8/3,  = 10 and  = 7. The red points represent 
the equilibrium at the origin, and the green points a symmetric 

pair of equilibria.
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ρ β σ Methods

We numerically catalogue changes to the number and 
stability of equilibrium and oscillating solutions in a 
bifurcation diagram (Figure 3). Each time a curve in the 
(⍴,µ)-plane is crossed, model (2) undergoes a topological 
change in its dynamics.


 


Overview

We study the four-dimensional Lorenz-like model:

which has a wild chaotic attractor according to [1] for the 
values ⍴ = 25, β = 8/3, σ = 10 and µ = 7 (Figure 2). 


🦋 Why these parameter values?

🦋 Why is this wild chaotic attractor different from a 

classical chaotic attractor?

🦋 What invariant sets are involved to create this wild 

chaos?


We want to answer these questions using a geometric 
approach to study changes in the topology of model (2) as  
⍴ and µ vary.

·x = σ(y − x),
·y = ρx − xz − y,
·z = xy − βz + μw,
·w = − βw − μz,

(2)
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Figure 3. Bifurcation Diagram. The -plane 

is divided into regions bounded by bifurcation curves

 that signify a change in topology. The shaded region


is a possible candidate for wild chaos.
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Figure 1. Lorenz attractor for  = 28,  = 8/3 and  = 10.

The red point is the equilibrium at the origin,


and the green points are a symmetric pair of equilibria.

ρ β σ

Figure 2. Projections of the wild chaotic attractor existing in model (2) at  = 25,  = 8/3,   = 10 and   = 7

onto the -plane (left) and the -plane (right). The red points represent the equilibrium at the origin, 


and the green points a symmetric pair of equilibria.
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