UNIVERSITY OF
AUCKLAND

Waipapa Taumata Rau
NEW ZEALAND

BEYOND CHAOQOS:

Is there a wild butterfly effect?

Juan Patino-Echeverria

Department of Mathematics, University of Auckland

Introduction

Have you heard about the butterfly effect? The 1dea that the

flap of a butterfly’s wings in Brazil could set off a tornado

1n Texas?

This concept was discovered by Lorenz in the 1960s [2].
He 1llustrated 1t with a simple model of convection

dynamics 1n the atmosphere, given by the vector field:

X =o(y —x),
Yy =pxX—XxZ—Y, (1)
Z=xy_ﬁza

for the parameters o= 28, #=8/3 and 6 = 10. When starting “ “

from two points arbitrarily close together, model (1)
produces a flow that pushes these points far apart very
quickly, even though both solutions lie on a butterfly-
shaped strange attractor (Figure 1), which is arguably the

most famous example of a (classical) chaotic attractor.

Figure 1. Lorenz attractor for p = 28, f = 8/3 and ¢ = 10.
The red point is the equilibrium at the origin,
and the green points are a symmetric pair of equilibria.

Our research 1s focused on characterising and 1dentifying
possible parameter-dependent transitions to wild chaos, a
new type of chaotic dynamics that can only arise in flows of

dimension at least four.

Figure 2. Projections of the wild chaotic attractor existing in model (2) at p =25, /=8/3,0 =10and u =7

onto the (x, y, 2)-plane (left) and the (x, z, w)-plane (right). The red points represent the equilibrium at the origin,
and the green points a symmetric pair of equilibria.

We study the four-dimensional Lorenz-like model:

X =o(y —x),
y = px—Xxz—Y,

2
Z2=xy— pz+uw, 2)
W= —fpw— uz,

which has a wild chaotic attractor according to [1] for the
values p =25, f=8/3, 0 =10 and u =7 (Figure 2).

W Why these parameter values?

W Why is this wild chaotic attractor different from a

classical chaotic attractor?

W What invariant sets are involved to create this wild

chaos?

We want to answer these questions using a geometric

approach to study changes in the topology of model (2) as
p and p vary.
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We numerically catalogue changes to the number and
stability of equilibrium and oscillating solutions 1n a
bifurcation diagram (Figure 3). Each time a curve in the
(p,u)-plane 1s crossed, model (2) undergoes a topological

change 1n its dynamics.
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Figure 3. Bifurcation Diagram. The (p, u)-plane
Is divided into regions bounded by bifurcation curves
that signify a change in topology. The shaded region
IS a possible candidate for wild chaos.

Results and Future Work

The bifurcation diagram in Figure 3 1s not yet complete.
Inside the shaded region, there are qualitative changes in

the dynamics of model (2).

For instance, consider the parameter points % and X in the

enlargement in Figure 3. For ¥, the attractor is a quasi-

periodic torus, whereas, for X, it is phase-locked (Figure 4).

Figure 4. Projections of a quasi-periodic torus (top) for
p = 13.074, and a phase-locked torus for p = 13.08 (bottom).

In both cases [/ = 8/3, 6 = 10 and u = 7. The red points represent
the equilibrium at the origin, and the green points a symmetric
pair of equilibria.

W Existence of an attracting invariant torus is not possible

in the classical model (1).

W Contrary to our expectation, wild chaos appears to
originate at # > 0 rather than at the homoclinic explosion

at u = 0.
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