Welcome to the Faculty of Engineering
Nau mai, haere mai, kuhu mai!

Engineers are problem solvers and innovators who work on real world problems to make the world a better place. At New Zealand’s leading engineering faculty* you will be empowered with the core techniques for solving complex problems, within an environment that creates opportunity for innovation and leadership.

The ten specialisations in our BE(Hons) are all taught on our central city campus in our brand-new state-of-the art engineering building, which embraces the theme of “visible engineering” to illustrate engineering concepts inherent in the building. A recent curriculum refresh, coupled with active blended-learning opportunities in our 26 new multi-disciplinary learning spaces, and study and breakout areas designed to encourage student collaboration, ensure we provide you with the best possible foundations for success.

Engineering is both ubiquitous and of significant value to the economy, with a recent estimate** that Engineering contributes around $15.0 billion per year to New Zealand, or about five percent of GDP. Conservative growth figures imply 1500 engineers need to be added to the workforce each year, excluding replacements for those who retire.

A degree in engineering offers unparalleled opportunities to contribute to global challenges. On behalf of our faculty, I invite you to join us to make a positive difference in our world.

Professor Gerard Rowe
Acting Dean of Engineering
The University of Auckland

Footnotes:
* https://www.topuniversities.com/subject-rankings/2020
** Economic Contribution of Engineering report at https://www.engineeringnz.org/big-deal/
Disclaimer

This publication intends to guide you through your time at the Faculty of Engineering. All information, including locations, hyperlinks and courses, are accurate at the time of print. Please regularly check www.engineering.auckland.ac.nz and our social media pages for any important updates.

All students at the University of Auckland are additionally advised to consult its official document, the University of Auckland Calendar, to ensure that they are fully aware of, and can comply with, all academic regulations, requirements and policies. This is available at www.calendar.auckland.ac.nz.
Dates to remember

Summer School 2021

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 Jan</td>
<td>Summer School begins</td>
</tr>
<tr>
<td>12 Jan</td>
<td>Last day to add, change or delete Summer School Courses</td>
</tr>
<tr>
<td>01 Feb</td>
<td>Auckland Anniversary Day</td>
</tr>
<tr>
<td>08 Feb</td>
<td>Waitangi Day</td>
</tr>
<tr>
<td>12 Feb</td>
<td>Lectures end</td>
</tr>
<tr>
<td>13 Feb</td>
<td>Study Break</td>
</tr>
<tr>
<td>15 - 17 Feb</td>
<td>Examinations</td>
</tr>
<tr>
<td>17 Feb</td>
<td>Summer School ends</td>
</tr>
</tbody>
</table>

Semester One 2021

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>22+ Feb</td>
<td>Orientation - Semester One</td>
</tr>
<tr>
<td>01 Mar</td>
<td>Semester One begins</td>
</tr>
<tr>
<td>12 Mar</td>
<td>Last day to add, change or delete Semester One Courses</td>
</tr>
<tr>
<td>26 Mar</td>
<td>Last day to add or delete double semester (A and B) courses</td>
</tr>
<tr>
<td>2-16 Apr</td>
<td>Mid-semester/Easter break</td>
</tr>
<tr>
<td>26 Apr</td>
<td>ANZAC Day</td>
</tr>
<tr>
<td>03, 05, 07 May</td>
<td>Autumn Graduation</td>
</tr>
<tr>
<td>04 Jun</td>
<td>Lectures end</td>
</tr>
<tr>
<td>07 Jun</td>
<td>Queen’s Birthday</td>
</tr>
<tr>
<td>08 - 09 Jun</td>
<td>Study Break</td>
</tr>
<tr>
<td>10 - 23 Jun</td>
<td>Examinations</td>
</tr>
<tr>
<td>28 Jun</td>
<td>Semester One ends</td>
</tr>
<tr>
<td>29 Jun - 16 Jul</td>
<td>Inter Semester Break</td>
</tr>
</tbody>
</table>

Summer School 2022

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 Jan</td>
<td>Summer School begins</td>
</tr>
<tr>
<td>28 Feb</td>
<td>Semester One begins</td>
</tr>
</tbody>
</table>

Semester Two 2021

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>12+ Jul</td>
<td>Orientation - Semester Two</td>
</tr>
<tr>
<td>19 Jul</td>
<td>Semester Two begins</td>
</tr>
<tr>
<td>30 Jul</td>
<td>Last day to add, change or delete Semester Two Courses</td>
</tr>
<tr>
<td>13 Aug</td>
<td>Last day to add or delete double semester (A and B) courses</td>
</tr>
<tr>
<td>28 Aug</td>
<td>Open Day</td>
</tr>
<tr>
<td>30 Aug - 10 Sep</td>
<td>Mid-semester break</td>
</tr>
<tr>
<td>28 Sep</td>
<td>Spring Graduation</td>
</tr>
<tr>
<td>22 Oct</td>
<td>Lectures end</td>
</tr>
<tr>
<td>25 Oct</td>
<td>Labour Day</td>
</tr>
<tr>
<td>26-28 Oct</td>
<td>Study Break</td>
</tr>
<tr>
<td>28 Oct - 15 Nov</td>
<td>Examinations</td>
</tr>
<tr>
<td>15 Nov</td>
<td>Semester Two ends</td>
</tr>
</tbody>
</table>

Summer School 2022

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 Jan</td>
<td>Summer School begins</td>
</tr>
<tr>
<td>28 Feb</td>
<td>Semester One begins</td>
</tr>
</tbody>
</table>
New Building 405

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 10</td>
<td>Chemical and Materials Engineering Department</td>
</tr>
<tr>
<td>Level 8</td>
<td>Mechanical Engineering Department</td>
</tr>
<tr>
<td>Level 7</td>
<td>Electrical, Computer, and Software Engineering Department</td>
</tr>
<tr>
<td>Level 5</td>
<td>Multi-Disciplinary Learning Spaces (MDLS) E&I Rooms and Soldering Workshop: 405-521; 405-522; 405-536; 405-541; 405-552; 405-559; 405-564; 405-569</td>
</tr>
<tr>
<td>Level 4</td>
<td>Seminar Rooms: 405-422; 405-430; Lecture Theatres: 405-460; 405-470</td>
</tr>
<tr>
<td>Level 3</td>
<td>MDLS Computer Labs: 405-326; 405-328; 405-336 (BYOD); 405-344 (BYOD); MDLS 3D Printers 405-347</td>
</tr>
<tr>
<td>Level 2</td>
<td>MDLS Laser Cutters: 405-221; MDLS Flexible Rooms: 405-222; 405-236; 405-240; 405-249; MDLS Wet Chemistry Rooms: 405-252; 405-268; 405-292; 405-297; 405-298</td>
</tr>
<tr>
<td>Level 1</td>
<td>MDLS Wet Non-Chemistry, Dirty Prep Rooms: 405-122; 405-136; 405-139; 405-188; 405-188A</td>
</tr>
</tbody>
</table>

Engineering Building 402

| Level 4 | Lecture Theatres: 401-401; 401-439 Engineering Student Centre; Student Engagement Team |
| Level 2 | MDLS Flexible Rooms: 402-211; 402-220 402-221; 402-225; 402-231 |

Engineering Tower B401

| Level 11 | Civil and Environmental Engineering Department |
| Level 3 | MDLS Computer Labs 401-301; 401-307; 401-311; 401-312 |

70 Symonds Street

Engineering Science Department
General information and facilities

Building access

All engineering students are allowed to enter the City Campus Engineering buildings 401 and 402 (20 Symonds Street) and building 405 (5 Grafton Road) between 6am and midnight seven days a week, including public holidays. These hours also apply to all study areas and computer labs. The following rules also apply:

- The main doors to the building will be open between 7.30am-6.30pm.
- You will need your access card to enter and exit the building between 6.00-7.30am and 6.30pm-midnight. During these times, you may enter and exit the building via door 401.3OOL1/1 (Level 3 leading in from the underpass).
- You are required to start packing up your belongings and vacate the building by 11:45pm, as doors will lock at midnight. Security will ensure that the buildings are clear of occupants.
- Access cards will not open any internal or external doors after midnight, seven days a week, including public holidays. If you are in the building at this time, you must call Security. A guard will establish why you are still in the building, record your ID number, and will need to inform the Faculty. This could result in your after-hours access being suspended.

Access to the labs is based on your specialisation and year of study. You are required to have permission from lab managers to gain access.

Newmarket Campus is open to students with access cards between 7am and 11pm seven days a week.

Always carry your valid access card and ID card with you. Do not lend your access card to anyone – this is considered as a breach of the University Security Policy and may result in immediate deactivation of your card until further notice.

Access cards

To gain access to the building after hours, and to certain labs that will be required, you must activate the card by completing the online application form via https://accesscard.foe.auckland.ac.nz. It may take up to two weeks for your card to be activated and your card must be renewed at the beginning of every year. To renew it, follow the same process as your initial application.

Access/Campus cards are not transferable under any circumstances. Please report loss or theft to the Security Office on extension 85000. You will need to buy a replacement card, once you have reported the loss. This is not a deposit and there are no refunds. For any questions please contact foe-facilities@auckland.ac.nz.

Health and safety

Smoking is prohibited in all Faculty of Engineering campuses, outdoor spaces and buildings, in accordance with the University’s smoke-free policy.

Please read the following health and safety information carefully. This is intended for all students within the Faculty of Engineering. It is not a complete guide to safety matters but details basic safety practices and procedures that need to be followed to ensure the health and safety of everyone within the faculty.

The University’s health and safety policy and the faculty’s safety information are available at www.engineering.auckland.ac.nz/safety.

You must ensure you are familiar with all provided Health and Safety information.

Essential safety personnel

Your first point of contact is your academic leader, lecturer, tutor or supervisor. If they cannot address your concerns, you may contact the Faculty’s Health, Safety and Wellbeing Manager, Tracey McGall at hsw@auckland.ac.nz or the Engineering Facilities team at foe-facilities@auckland.ac.nz

Your responsibilities

The University is committed to providing a safe and healthy environment for you to work and study in. As a student, you have the following responsibilities:

- Stop activities that are dangerous to you and others
• Complete any required health and safety training
• Follow health and safety instructions. If you are unsure, in doubt of what to do, or have concerns you must seek help from your lecturer, tutor or supervisor
• Speak to your lecturer, tutor or supervisor as soon as possible about any personal health and safety concerns
• Report all accidents, near misses, ill health and building/equipment damage
• Where required, wear personal protective clothing, personal protective equipment, and use provided safety equipment
• Familiarise yourself with the procedures and limitations for working alone
• Do not interfere with health and safety equipment, devices or signage. If you find damage, or there is a malfunction, please alert your supervisor/leader immediately

Please note that it is a condition of your enrolment to cooperate with the University in regards to health and safety. Failure or refusal to carry out your responsibilities may have consequences for your further study.

Risk Assessments
As you advance in your studies and in your future engineering career, you will be required to participate in the risk assessment process. You will initially be obliged just to follow risk assessments, but will later be required to write them. Risk assessment training and guidance will be provided to you as the need arises.

Right of refusal to participate in dangerous activities
Some activities performed by the faculty will possess a high health and safety risk if they are not properly managed. In the vast majority of cases, risks will be identified and appropriately controlled to an acceptable level and you will be informed of what you need to do to remain safe before you start any activity.

You have the right to not proceed with any activity if you feel, on reasonable and objective grounds, that it poses a danger to yourself or others. You must then immediately raise your concerns with your academic leader or the health and safety manager so that we can address the issues before any activity begins.

Faculty safety rules
In order to manage risks, we need to limit your access to equipment, labs and workshops until you have been provided with information about the possible hazards you may encounter, and the safe methods of work you must follow.

The following rules apply to all students:
1. If you create a risk, you own the risk. If your research or work could potentially cause harm or damage, you must work with your supervisor, or academic leader, to reduce risk as far as it is reasonably practicable before you start.
2. You must not enter a laboratory, workshop or store room unless given specific authorisation, or are escorted by an authorised person. In either case, you should seek advice on any hazards you may encounter before you enter.

 Note: Having access cards or keys does not mean you are authorised to access a facility, nor permit you to allow another person into that area.

3. You must not attempt to operate any equipment or apparatus unless you have been authorised and shown how to use it safely.

4. When working, keep your work area clean and tidy, and make sure your bags and/or personal items do not cause trip hazards.

5. When you have finished for the day, make sure all tools and equipment are returned to their proper storage, the area is tidy, and equipment is properly shut down. Wash your hands if you need to.

6. You must not eat or drink while you are in workshops and laboratories.

Laboratories and Workshops
Students may only use the laboratories and workshops where they have been given specific authority to work by their course coordinators and/or academic supervisors and technical staff in charge.
All students will be required to wear appropriate personal protective equipment depending on which laboratory and workshop you work. Personal protective equipment, such as safety glasses, lab coats, masks, hearing protection will be provided by laboratories and workshops. Some laboratories might require students to wear protective laboratory coat, students are permitted to wear their own if they wish (boiler suits/overalls or similar protective clothing are also acceptable for most labs: the student will need to confirm the suitability with their course tutor/lab coordinator).

Because there are hazardous substances and various types of equipment in the laboratories and workshops, there are guidelines around their use:

1. You should not work alone in a laboratory or workshop
2. You should only carry out work you are familiar with. Specific in-person training will be required and provided for undertaking hazardous operations. This includes (but not limited to):
 - Handling or mixing chemicals
 - Wiring up electrical equipment
 - Using machine tools other than battery powered ones
 - Using equipment designated by the technicians in charge of the laboratory as hazardous
 - Using welding or oxy-acetylene equipment
3. When leaving a laboratory or workshop, students and staff are responsible for making sure that all equipment and services are in a safe condition. This means, for example, turning off any electricity, gas and water that have been used.

If you have any questions relating to MDLS, please contact the MDLS Core Technical Services Team at MDLS@uoa.auckland.ac.nz

Inductions

Many teaching and learning spaces areas such as lecture theatres are considered low risk, and you may only need a quick briefing to know where the emergency exits are.

The laboratories and workshops present increased risks. Anyone who needs to access laboratories and workshops will be invited to participate in an induction with a staff member. These inductions are generally facilitated by a technical staff in charge. After an induction and before starting work in these areas, you should be able to answer the following questions:

- Who are my academic leaders or supervisors?
- How do I get out of the building in the event of an evacuation?
- What are the likely emergencies I will encounter and what will I need to do?
- What are the emergency contact numbers?
- Where is the nearest fire alarm, first aid kit and defibrillator?
- Where are the isolation controls/emergency shut-off procedures for the equipment I am going to use?
- Do I need specific training to use items, equipment or machinery?
- What protective or safety equipment do I need to use to do my work safely?
- What other work is being performed nearby? Will it interfere with my work? Will my work affect others?
- Am I allowed to perform low risk work alone, or do I need a supervisor while I am working?
- Can I do my work after normal working hours, or do I need to leave when the staff go home?

If you can’t answer these questions, please see your academic leader or supervisor or the technical staff in charge of the laboratory or workshop.

What to do if you have an accident or incident

Students should report incidents, injuries and observations to the Student Contact Centre via Ask Auckland or via their academic supervisor.

If you have any questions relating to MDLS, please contact the MDLS Core Technical Services Team at MDLS@uoa.auckland.ac.nz

For emergency assistance contact University Security (24 hours) at 0800 373 7550

Faculty support services

Course planning and enrolment advice
The Engineering Student Centre may be your first point of contact for all engineering programme enquiries, including course planning and enrolment advice. Email foe-enquiries@auckland.ac.nz or visit us at:
Location: Level 4, Faculty of Engineering Building, City Campus, 20 Symonds Street
Opening hours: 8:30am-4:30pm, Monday-Friday (excluding University holidays).

Personal guidance
We recognise that there are various factors that may impact your studies. The University offers a range of support mechanisms for you. This includes support for anxiety and stress, learning needs, financial stress, and unforeseen events.
The Faculty of Engineering Student Engagement team provides individual support if you are struggling, stressed, or have experienced a traumatic event which may impact your study. Feel free to drop in and see us, or email foe-engagement@auckland.ac.nz.

In general, we provide academic and pastoral services, and are able to link you to key support services such as health and counselling, career development, and our library and learning staff.
Our experienced staff work closely with the faculty’s student clubs and associations to provide social, professional and academic opportunities for students. The initiatives we support and operate include: Orientation; the Part I Assistance Centre; wellbeing resources; student clubs; SPIES; Tuākana tutoring and mentoring for Māori and Pacific students; the Women in Engineering and Rainbow Engineering networks; recruitment evenings with prospective employers; and special support for international students, students with disabilities and refugee students.

Academic issues
If matters arise that affect your study, you should feel confident discussing them with your lecturer or course coordinator. You may also like to speak with the relevant Departmental UG Adviser and/or the Deputy Head of Department (Academic). If the situation is not dealt with to your satisfaction, these may then be referred to your Head of Department. Find contact details for the Departmental UG Advisers here: www.auckland.ac.nz/en/engineering/study-with-us/study-options/courses/academic-advisers.html.
For issues of a more general nature, or if ever there is an occasion when you wish to dispute how a matter has been handled by a department, you may bring these to the attention of the SSCC, Associate Deans or the AUSA Advocacy Service.

Faculty Staff-Student Consultative Committee (SSCC)
SSCC contains two student representatives nominated from each department’s SCC, representatives from major student groups, administrative staff and academics. The Faculty SCC addresses faculty-wide issues affecting academic life, resources and services. SCC serves as a liaison between the students and the faculty. Two meetings are usually held per semester, but urgent issues may be brought to the attention of the Chair at any time. You are encouraged to talk to your class representatives to bring matters to the attention of the SCC. You can email them at: (code)-rep(year of study}@auckland.ac.nz, where ‘code’ refers to the relevant course, such as ‘chemmat’. Part I students may be able to contact their representative at eng-rep1@auckland.ac.nz

Part I Assistance Centre
The faculty employs high-achieving Part II and III students to provide academic assistance to Part I students. The Part I Assistance mentors are trained and maintain close contact throughout the Semester with the course coordinators for all Part I courses.
The Part I Assistance Mentors are located in the Leech Study Area level 3 in building 402 from 2-5pm, Monday to Friday, during Semester One and Two.
The service is also provided at O’Rorke Hall and
University Hall for engineering students living there. For information, contact Alcíone Fagundes at a.fagundes@auckland.ac.nz.

Part II Assistance Centre
The Faculty employs current high-achieving Part III and IV students to provide free academic assistance and tutoring to Part II students on a drop-in basis.

This initiative is available to help you with all your courses throughout Semesters One and Two if you’re specialising in the following:
- Civil and Structural Engineering
- Mechanical Engineering
- Mechatronics Engineering
- Electrical and Electronic Engineering
- Computer Systems
- Software Engineering

The Part II Assistance Centre is located in the Leech Study Area in Level 3, Building 401 of the Faculty of Engineering.

For more details, please visit our webpage: https://www.auckland.ac.nz/en/engineering/current-students/student-support/part-ii-assistance-centre.html

Tuākana Tutorial Programme
The Faculty employs high-achieving Undergraduate and Postgraduate students to provide targeted tutorials and academic support for Māori and Pacific Engineering students. Tutorials start in the second week of semester. Your timetable is set by the faculty by way of a special Tuākana-only stream of classes to make sure there are no clashes in your class schedule. Access to this stream of classes is granted for all MAPTES entry students and by registration with the Māori and Pacific adviser for all General Entrants. Please note that General Entry students who do not register will not be able to choose the Tuākana class timetable on enrolment, will have timetable clashes, and will not be able to make use of all the Tuākana tutorial sessions and academic support. We strongly recommend registering for access to the Tuākana class stream timetable.

There are Tuākana tutorials for all seven core Part I Engineering courses. For more information please email foe-engagement@auckland.ac.nz

Scholarships and prizes
More than 40 scholarships ranging from $1,000 to $7,500 are gifted annually by individuals, societies, businesses and industry to promising undergraduate engineering students.

The Faculty of Engineering also offers up to 22 Kick Start scholarships specifically for school-leavers applying to Part I of BE(Hons).

These scholarships are a one-year award of $2,000 aimed at helping students with "set up" costs for their first year at the University of Auckland. The closing date for all Kick Start scholarships is 15 January.

Visit www.engineering.auckland.ac.nz/scholarships to find out more about engineering undergraduate scholarships, or get further assistance by contacting the Scholarships Office at scholarships@auckland.ac.nz.

Contact for academic issues
Associate Dean (Academic)
Dr Michael Hodgson
Room 405.943, 20 Symonds Street
+64 9 923 8218
ma.hodgson@auckland.ac.nz

We’re here to help you succeed!
Academic Information

Course details and requirements
You will receive detailed course outlines in Canvas describing the material covered; how it will be assessed; the percentage of assessments contributing to your final grades, and assessment due dates. This information may also be provided as a handout in your first lecture or in your coursebook, if one is provided. Be sure to put any assessment dates in your diary. All course outlines can be accessed at https://courseoutline.auckland.ac.nz/dco/course.

Student Services Stall
There are various methods of submitting and returning assignments, and you will be informed of the right procedure. Many courses use the Student Services Stall in the atrium on Level 3 between B401 and B405, 20 Symonds Street, to collect and return coursework. You need to produce your ID card before collecting assignments. Any assignments not collected within two weeks are returned to the relevant department office.

Academic misconduct, cheating and plagiarism
The University of Auckland views cheating as a serious offence. Penalties for cheating in examinations are administered by the Discipline Committee of the Senate and may include suspension or expulsion from the University. Cheating in on-course work is usually handled within the faculty or department, and may result in the assignment being marked as zero or a course being failed. The student’s name and details of the case may be added to the University’s Register of Academic Misconduct.

Learn more about how to avoid various forms of cheating in the Exam Regulations of the University of Auckland Calendar and the compulsory Academic Integrity course in Part I of the BE(Hons). The full guidelines on procedures and penalties for academic dishonesty are available at www.auckland.ac.nz/academic_honesty.

Grading and Honours
For each Part of the BE(Hons) degree, your Grade Point Average (GPA) is calculated using the following formula:

\[\text{GPA} = \frac{\sum g_i P_i}{\sum P_i} \]

Where \(P_i \) is the points for course \(i \) and \(g_i \) is the numerical value of the grade awarded in course \(i \). The numerical values for the grades are:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Numerical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
</tr>
<tr>
<td>A-</td>
<td>7</td>
</tr>
<tr>
<td>B+</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>B-</td>
<td>4</td>
</tr>
<tr>
<td>C+</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>C-</td>
<td>1</td>
</tr>
<tr>
<td>Fail</td>
<td>0</td>
</tr>
</tbody>
</table>

It should be noted that failing grades as well as grades for repeated courses are included in the GPA. If all courses are worth 15 points, the GPA can be calculated easily as the average of the grade values for all courses (including failed courses).

Examinations
Examinations take place at the end of each semester. Students can access their examination timetable on Student Services Online after it is published during the semester. Final exams are administered by the University’s Examinations Office. See www.auckland.ac.nz/exams for more information.

Restricted Calculators
There are specific regulations about the type of calculator you may use during tests and exams. If your exam specifies a “Restricted Calculator” the following defines the type permitted for engineering courses:

- Your calculator must comply with the general calculator requirements in the University of Auckland Calendar
- No alphanumeric calculators. Your calculator must not have the full alphabet on or available
from the keyboard
• No graphing ability
• Your calculator must not have wireless/wired communication capability to another calculator or computer
• Your department may have further requirements for calculator specifications
• A typical complying calculator is the Casio fx-82AU PLUS II.

If in doubt, check with your course coordinator well in advance of exams. If you bring a suspect or non-complying calculator into a test or exam, it will be removed and held for checking, and your name will be recorded in case further action is necessary.

Missed exams

Students who report too late for admission to the exam room or who miss the exam completely cannot sit that exam at another time. If you missed your exam due to illness or unforeseen circumstances then you may be eligible to apply for an aegrotat or compassionate consideration. Strict criteria applies.

For more information visit: https://www.auckland.ac.nz/en/students/academic-information/exams-and-final-results/during-exams/aegrotat-and-compassionate-consideration.html

Missing a test

Tests that contribute to your final grade, and are held under examination conditions, are subject to the same rules for aegrotat and compassionate consideration as examinations. If you miss a test, you should complete Form AS-46 and submit it within seven days of the test. The application costs $10 and is available online at: https://tinyurl.com/y7chwh6w0, or at www.engineering.auckland.ac.nz/exams.

Missing an on-course assessment

For on-course assessments or coursework other than a test, you should first request an extension of the due date from the course coordinator. If an extension is not given or is considered inappropriate, you may submit an exemption request through the “Application for Exemption from On-course Assessment” form available online at https://uoa.custhelp.com/app/answers/detail/a_id/10972

Contact the Engineering Student Centre or the Engineering Student Engagement team for further help.

Conceded passes

If you fail a course, you may be eligible for a conceded pass, which carries a passing numerical grade of 1 (equivalent to a C-). You cannot apply for a conceded pass; eligible students will be automatically considered and conceded passes will be confirmed at the end of each year. If granted, you will see a ‘CP’ on your academic record. No more than two courses can be conceded, to a maximum of 30 points, in any one degree.

You will only be considered for a conceded pass if:
• The award of the conceded pass allows you to complete a Part.
• You have a D+ grade in the failed course(s).
 Note: “Withdraw”, “Did Not Complete” and “Did Not Sit” constitute failures and are not considered for conceded passes.
• Your overall GPA (grade point average) for the year, including the failed courses, is 2.5 or above (C = 2, C+ = 3).
• The failed course(s) belong to Parts I, II or III of the BE(Hons) degree (Part IV courses can not be conceded).
• One course to a maximum of 20 points per Part and a maximum of 20 points in any one academic year may be conceded.

Alternative exam arrangements

• Special exam conditions
 If you need support for an ongoing condition, (including temporary or permanent disabilities) while sitting an examination, you can apply for special exam conditions. This will require an application via University Health Services or Student Learning Services.
 • Out-of-time or out-of-centre exams
There are strict criteria in place for approving an exam to be sat at a different time (referred to as out-of-time) or place (out-of-centre). Applications for personal commitments or travel will not be accepted. You should not book any travel during the exam period until after your finalised exam timetable is published. www.auckland.ac.nz/en/students/academic-information/exams-and-final-results/before-exams/special-conditions.html

Applications must be submitted at least 1 month before your first affected exam; otherwise your application may not be considered in time.

You need to contact the Exams Office (Email: exams@auckland.ac.nz or for in-person queries please visit AskAuckland Central) not your lecturers for this.

Late deletion
Late deletion is available to students who are unable to continue studying due to exceptional circumstances such as illness, injury, or events beyond your control. The deadline to submit a late deletion request is on the final day of lectures. If you wish to apply for late deletion, consider seeking support from the University’s Counselling Service or student advisers first. Contact the Engineering Student Engagement Team for more information.

Admission

Admission to Part I
Places available in Part I (first year) of the BE(Hons) are limited and subject to selection. For further information, including entry requirements and alternative pathways, visit www.engineering.auckland.ac.nz/entry.

Admission to Part II
Part II of the BE(Hons) programme is divided into nine specialisations. Entry into each specialisation is strictly limited: the faculty will not exceed the University Council’s approved limitations on entry into Part II specialisations, as stated in the University of Auckland Calendar.

Places available in 2021 are:

<table>
<thead>
<tr>
<th>Specialisation</th>
<th>Places</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering</td>
<td>35</td>
</tr>
<tr>
<td>Chemical and Materials Engineering</td>
<td>85</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>180*</td>
</tr>
<tr>
<td>Computer Systems Engineering</td>
<td>80</td>
</tr>
<tr>
<td>Electrical and Electronic Engineering</td>
<td>100</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>75</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>125</td>
</tr>
<tr>
<td>Mechatronics Engineering</td>
<td>100</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>120</td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>100*</td>
</tr>
</tbody>
</table>

*In 2021 a new specialisation called Structural Engineering has been added. At Part II, Civil and Structural share the same courses and have a combined maximum of 280 places. Some flexibility will be allowed around numbers, and may take up to 180 places into Structural, or up to 200 into Civil. Because the two specialisations share the same Part II courses, there will be some opportunity for Civil and Structural students to swap between specialisations at the end of Part II.

Priority placement is given to current University of Auckland students who have recently completed Part I of the BE(Hons).

Subject to availability of places, students who have completed the first year of a BE(Hons) programme at another tertiary institution may be considered for admission directly into Part II, dependent on their academic performance (at least a B average) and the equivalence and relevance of their prior study. There is no automatic acceptance or transfer of credit for engineering qualifications and each case will be considered individually.

The prior completion of certain qualifications may also provide direct entry into Part II, subject to a Grade Point Average (GPA) of at least 5.0 B average and places remaining available. Such qualifications include a completed New Zealand Diploma of Engineering, Bachelor of Science, Bachelor of Technology with appropriate subjects.

Students wishing to transfer need to complete an application via Student Services Online and indicate the specialisation for which they wish to be
considered under Major/Specialisation, eg, Civil Engineering.

Students who are offered direct entry into Part II from another degree and/or institution must still complete the requirements for ENGGEN 199 English Language Competency and ACADINT A01 Academic Integrity Course without exemption (more information on page 26). International applicants must also meet certain English language requirements as per University policy. Further information can be found at www.auckland.ac.nz/english-language-requirements.

The faculty will not permit entry into Part II of the BE(Hons) in Semester Two, unless students have prior study elsewhere which can be substituted for the courses they have missed in Semester One.

Part II selection criteria

Current Part I students will nominate their top five choices of specialisation before the end of Semester Two. The faculty offers a variety of resources to help you consider your specialisation of choice, including editorials written by current students at https://student-editorials.blogs.auckland.ac.nz

To be considered for admission into your preferred specialisation, you must have:

- Completed a minimum of 90 points of Part I, including ENGSCI 111 (your General Education course can be included in the points requirement).
- Completed or received credit for any specified Part I course regarded as a prerequisite for your preferred specialisation (e.g. CHEMMAT 121 for Chemical and Materials; ELECTENG 101 for Computer Systems Engineering and Electrical and Electronic; ENGGEN 121 for Civil, Mechanical and Mechatronics; and ENGGEN 131 for Biomedical, Engineering Science and Software).
- Completed requirements for ENGGEN 199.
- Completed requirements for ACADINT A01.

If demand exceeds the number of places available in a specialisation, all students will be ranked according to their GPA in Part I BE(Hons) courses (excluding their General Education course). Students will not be ranked unless they complete the above requirements.

Places in your preferred specialisations are not guaranteed and you may be offered a place in another specialisation if places are no longer available in your first (or lower) choice/s.

If you fail up to 30 points of courses in Part I, you are advised to repeat them at Summer School. Similarly, if you only began the BE(Hons) in Semester Two (and have only completed 60 points of Part I) you are required to make up your remaining 30 points for Part I at Summer School. In order to be considered for entry into Part II the following year.

If you are admitted to Part II in Semester One, before you have completed all of Part I, you will be required to complete any outstanding Part I courses in Summer School of the following year. You will not normally be permitted to enrol in the outstanding Part I courses during Semester One or Two.

Any student who does not complete Part I within two years of initial enrolment may not be permitted to continue in the BE(Hons).

More information can be found at: www.auckland.ac.nz/en/engineering/current-students/undergraduate/choosing-engineering-specialisation.html.

BE(Hons) degree information

Bachelor of Engineering (Honours) degree structure

The BE(Hons) degree at the University of Auckland is a four-year programme consisting of 480 points and divided into four Parts (equivalent to one year each). Each Part consists of courses totalling 120 points.

In general, each Part must be completed in chronological order – Part I must be completed before Part II, for example. Any exceptions must be approved by the Associate Dean (Academic) on a
Calculation of the Honours GPA (HGPA)
The award of Honours is dependent on the value of your Honours GPA. This is calculated using the formula below and then rounded to one decimal place.

\[
HGPA = 0.1 \times \text{PART II GPA} + 0.3 \times \text{PART III GPA} + 0.6 \times \text{PART IV GPA}
\]

Award of Honours
Honours is awarded in four classes: First Class, Second Class (First Division), Second Class (Second Division) and Third Class*.

Your class of Honours will depend upon you achieving the following GPA:

- **First Class Honours**: \(7.0 \leq HGPA\)
- **Second Class Honours (First Division)**: \(5.5 \leq HGPA < 7.0\)
- **Second Class Honours (Second Division)**: \(4.0 \leq HGPA < 5.5\)

Third Class Honours: \(HGPA < 4.0\)

A GPA of 4.0 is equivalent to a B- and a GPA of 7.0 is equivalent to an A-, so First Class Honours can be recognised as being in the A grade range while Second Class honours can be recognised as being in the B grade range.

Students with \(HGPA < 4.0\) will be awarded the BE degree without Honours or 3rd Class Honours*.

* Third Class Honours was added in 2020. 3rd Class Honours can only be awarded to students who have completed their final academic (non-zero pt) course, required for the degree, no earlier than Semester One 2020 (Note that ENGGEN 199, 299, 499 are NOT considered to be academic courses).
Study in the first year

Part I

Part I is a common year – all students take the same courses. You gain exposure to each of the ten different engineering specialisations and study a broad base of Engineering and professional fundamentals.

Part I of the BE(Hons) consists of 120 points comprising:

<table>
<thead>
<tr>
<th>Part I - BE(Hons)</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENNGEN 140</td>
<td>Energy and Society</td>
</tr>
<tr>
<td>ENNGEN 121</td>
<td>Engineering Mechanics</td>
</tr>
<tr>
<td>ENGSCI 111</td>
<td>Mathematical Modelling 1</td>
</tr>
<tr>
<td>ENNGEN 115</td>
<td>Principles of Engineering Design</td>
</tr>
<tr>
<td>GEN ED Course</td>
<td>(Semester One or Two)</td>
</tr>
<tr>
<td>ENNGEN 199</td>
<td>(0 points) English Language Competency</td>
</tr>
<tr>
<td>ACADINT A01</td>
<td>(0 points) Academic Integrity Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Two</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMMAT 121</td>
</tr>
<tr>
<td>ELECTENG 101</td>
</tr>
<tr>
<td>ENNGEN 131</td>
</tr>
<tr>
<td>ENNGEN 199</td>
</tr>
<tr>
<td>ACADINT A01</td>
</tr>
</tbody>
</table>

Conjoint degree

A conjoint degree enables you to complete a BE(Hons) and another degree at the same time, with a reduction in the total points required for each degree component. It can be an excellent choice if you know that the other degree will be beneficial in your proposed career, or if you are a capable student with skills in various areas, or considering postgraduate studies.

Part I of the BE(Hons) conjoint consists of at least 105 point.

<table>
<thead>
<tr>
<th>Part I - BE(Hons) conjoint</th>
<th>105 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENNGEN 140</td>
<td>Energy and Society</td>
</tr>
<tr>
<td>ENNGEN 121</td>
<td>Engineering Mechanics</td>
</tr>
<tr>
<td>ENGSCI 111</td>
<td>Mathematical Modelling 1</td>
</tr>
<tr>
<td>ENNGEN 115</td>
<td>Principles of Engineering Design</td>
</tr>
<tr>
<td>GEN ED or CONJOINT Course</td>
<td>(Semester One or Two)</td>
</tr>
<tr>
<td>ENNGEN 199</td>
<td>(0 points) English Language Competency</td>
</tr>
<tr>
<td>ACADINT A01</td>
<td>(0 points) Academic Integrity Course</td>
</tr>
</tbody>
</table>

Further conjoint information is on page 22

• All courses listed in tables above are 15 points unless otherwise stated
• Visit https://courses.foe.auckland.ac.nz/course for detailed course information, or see the back of this handbook.
Enrolment - Part I Students

After you have accepted your offer of place, you will be sent documents detailing how to enrol. Students enrol in their courses through Student Services Online. Instructions on how to do this can be found at https://www.auckland.ac.nz/en/study/applications-and-admissions/enrolment.html.

It is recommended that you complete your enrolment as early as possible as classes fill up quickly. Enrolment deadlines can be found in the Important Dates section of the University Calendar: www.calendar.auckland.ac.nz/en/keydates/enrol-dates.html.

MAX (MATHS 153 or MATHS 199) students

Students who obtain a B+ or better as part of the MAX (Mathematics acceleration and extension) programme can choose to cross credit their MAX course (MATHS 153 or MATHS 199) towards their engineering degree and can then enrol in an approved Part II course during their first year in engineering*. Those who received a grade lower than a B+ are required to enrol in the standard first year in engineering courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Grade required to cross credit</th>
<th>Course MAX replaces</th>
<th>Alternative course to fill part 1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHS 153</td>
<td>B+ or better</td>
<td>ENGSCI 111</td>
<td>ENGSCI 211</td>
</tr>
<tr>
<td>MATHS 199</td>
<td>B+ or better</td>
<td>ENGSCI 131</td>
<td>ENNGEN 204</td>
</tr>
</tbody>
</table>

MAX students can contact Peter Bier for part 1 engineering course advice by emailing p.bier@auckland.ac.nz.

* Those student enrolled in a conjoint degree may wish to consider completing a course from their other degree other than the suggested alternatives above.

General Education courses

General Education courses are designed to broaden your education. They give you an opportunity to mix with students from different disciplines and develop your awareness of interdisciplinary research.

You must pass one approved General Education course (15 points) in Part I of your degree. Special arrangements may apply for conjoint students or students who have transferred from another tertiary institution with credit.

You MUST choose from a range of courses from either the "General Education Open Schedule" or the "Engineering, Medical and Health Sciences, and Science Schedule (EMHSS)". You cannot enrol in a General Education course with the same course subject as any you will take within the degree, such as ENNGEN 100G, ENNGEN 101G, CHEMMAT 100G.

Refer to www.auckland.ac.nz/generaleducation for more details.

In some cases, courses are available both as part of the General Education programme and as part of regular degree programmes. If you choose such a course, you MUST enrol in the G version of the course (e.g. HISTORY 103G). Enrolment in the non-“G” version may not be counted as fulfilling the General Education requirement.

Academic English Language Requirement (AELR)

In 2016, the University introduced an Academic English Language Requirement (AELR) into all its bachelors degree programmes. The AELR aims to ensure that you have a sufficient level of competence in academic English to support your study at University. This will not affect whether you are offered a place in a programme, being separate to University Entrance English requirements.

Applicants who have not met the AELR through their entrance qualification will be provided with advice at the time of enrolment. Students required to complete a course for AELR may substitute one of the approved courses in the place of a General Education course. For further information, see www.auckland.ac.nz/aelr.
English Language Competency – ENGGEN 199

This is separate from, and in addition to, AELR and University Entrance English requirements. All students entering the BE(Hons) degree are required to complete ENGGEN 199 (English Language Competency) as a compulsory component of their Part I requirements, even if they are entering the degree at a Part II level.

In order to fulfil the requirements of ENGGEN 199, firstly you must complete the 30 minute Diagnostic English Language Needs Assessment (DELNA) screening. For most students, the completion of this screening will be sufficient.

Results are not graded, except for an indication of whether you have completed (CPL) the requirements for ENGGEN 199.

If a full assessment is requested by the DELNA team, you will be required to complete a two-hour diagnosis, which you must book as soon as possible, or at least before the semester ends. If this diagnosis indicates that you need to work on your academic language skills, you will need to do a programme of language skill development coordinated by the University’s English Language Enrichment centre (ELE). You will not be allocated a specialisation unless you have met the requirements for ENGGEN 199.

The DELNA screenings take place on campus in one of the University’s computer labs. We strongly encourage you to book a screening during Orientation and complete this. Visit www.delna.auckland.ac.nz for more information.

Academic Integrity Course – ACADINT A01

All new students are required to complete an online academic integrity course. This is also a requirement to be allocated a specialisation, and so BE(Hons) students (single and conjoint) are required to complete this in Part I. More details are provided at www.auckland.ac.nz/academic_honesty.

Parts II, III and IV students

Before enrolling, read our guidelines for returning students at www.auckland.ac.nz/en/engineering/current-students/undergraduate/course-enrolments.html You should also consider the guidelines on the main University website at www.auckland.ac.nz/enrolment.

Electives not listed in your degree structure will require approval of your department course advisor.

If you fail a course, you will only be able to enrol in the courses you have yet to complete in that Part.

If you need to enrol in a course at a higher level, or encounter a timetable clash with no alternative options, you will need to apply for an enrolment concession via Student Services Online. If approved, Student Centre staff will enrol you in the appropriate course(s). Only in exceptional circumstances will a student be permitted to enrol for Part III unless Part I has been completed, or to enrol for Part IV unless Part II has been completed.

Repeating a course for a third time

A concession request will need to be made to repeat a failed course for a third time. Third time repeats of Part I courses are likely to be declined, and will require the student to find another course of study, other than Engineering. Requests to repeat failed courses at Part II - IV for a third time will be assessed against the students overall performance in the programme and in their coursework and may be declined. If a core course cannot be repeated for a third time this will result in discontinuation from study in the BE(Hons). A full semester of DNS or DNC will also likely result in not being permitted to continue study in the BE(Hons). Contact the Faculty of Engineering Student Centre for advice.
Field trips
As part of your course, you may need to go on field trips to study engineering plants and works. You will be given details about these requirements as soon as they are available. Any field trips specified as compulsory form part of the requirements for obtaining your degree.

Workshop Practice (ENNGEN 299)
ENNGEN 299 is carried out in year 2 of the BEHONS programme.
In 2021 we are changing the delivery of this course. These changes will be aligned to what your specialisation needs and what you are likely to use in internships.
Health and safety in the workplace and around tool-use will remain a core component. You will still attend sessions in basic tool use and specialisations will be undertaking activities more relevant to the specialisation. There will still be a need for workshop attendance.
For students who are selected into Mechanical, Mechatronics and Biomed you will be required to attend the MIT workshops as per our previous ENNGEN 299. For all other students selected into the other specialisations, you will do some online modules and a series of shorter workshops at our Auckland and Newmarket campus over 2021.
More information about what ENNGEN 299 will look like for you in 2021 will be sent out to students via e-mail explaining the process for your specialisation for 2021, and how this will fit into your schedules.
We will also post information on our website as soon as it comes available at www.engineering.auckland.ac.nz/workshop-practice
Any exemption requests must be supported by documentary evidence of having attended a similar course elsewhere.

Practical Work (ENNGEN 499)
As part of your BE(Hons) degree you are required to experience some of the trade and/or sub-professional skills relevant to your engineering specialisation. This complements your formal studies and contributes to your professional training, providing you with trade and sub-professional skills relevant to your engineering specialisation.
You must complete at least 800 hours of approved engineering employment (paid or unpaid) before graduation. After each period of work, you will submit a report detailing your experience. Students will not be considered to have met the requirements to graduate until both Workshop Practice (ENNGEN 299) and Practical Work (ENNGEN 499) have been completed.
As it is a formal requirement of your degree, strict assessment criteria apply. You can find detailed information and FAQs about practical work requirements as well as the impact of COVID-19 on Practical Work at www.engineering.auckland.ac.nz/practical-work.

Important points to note:

- **When**: To meet the requirements for the award of the BE or BE(Hons) degree, you must complete 800 hours of practical work (which may be made up of either all general hours, or all sub-professional hours, or a combination of both general and sub-professional hours) AND write a practical work report that critically appraises your experience.
- **When**: Practical work experience will usually be undertaken during the study summer breaks following Parts II and III (400 hours in each).
- **Types of work**: Appropriate types of practical work are outlined in the following section. Non-engineering work will not be accepted. Concerns about the suitability of a particular type of work should be discussed with your department representative on the Practical Work Committee.
- **Employers**: Except for work associated with scholarships or internships, each work experience period should be with a different employer.
- **Summer scholarships**: If you participate in a project for a University Summer Research Scholarship, you may count up to 400 hours of this towards your practical work experience.
• **Registration:** You must register your practical work employment online through the Practical Work Portal prior to, or during the first week of employment, so the Employer Liaison Manager can validate the company. If you miss this deadline please contact foe-enquiries@auckland.ac.nz.

• All completed practical hours and tasks must be verified online by your supervisor through the Practical Work Portal. In the unlikely event that your supervisor doesn’t have an email address you may request a pdf certificate to be attached to your report by contacting foe-enquiries@auckland.ac.nz.

• **Report:** A separate report is required for each company.

• **Due dates:** Check the Practical Work web page for submission dates, especially around dates to make sure you are eligible to attend graduation ceremonies. See www.engineering.auckland.ac.nz/practical-work.

• **Exemptions:** If you have had substantial relevant work experience prior to entering the faculty, you may be required to complete only 400 hours of practical work experience. Any exemptions or exceptions to any of the aforementioned requirements are to be approved by the appropriate departmental representative of the Practical Work Committee or the Faculty Chair.

Types of practical work suitable for each department

Although most students will complete 800 hours over two summers for a 400 + 400 hour split, other hour splits are acceptable. Check the Practical Work web page for the impact of COVID-19 on practical work.

Practical work has historically been categorised as General or Sub-Professional

• **General engineering:** This is often undertaken in the first period of practical work period and should allow you to become familiar with engineering processes and trade skills, particularly those appropriate to your specialisation.

• **Sub-professional engineering:** This is more likely to be part of the second period of practical work period, when your knowledge of engineering subjects will be more extensive. Work of this type is of a sub-professional nature; the work of a junior engineer in a company with some responsibilities and technical expertise, which takes advantage of the academic training gained from your courses completed in your engineering degree.

The following are meant as guidelines for types of acceptable work; other types may be acceptable. If in doubt, check with your departmental representative.

Ideally with your practical work you will undertake some work in each category, but there is now no minimum (or maximum) number of hours required in each category.

Practical work reports

The practical work component of your degree requires you to:

• Complete 800 hours of practical work experience.

• Write and submit a practical work report for each period of employment.

• Please refer to the Practical Work web page for the required content and further details on the structure of the practical work reports. Visit www.engineering.auckland.ac.nz/practical-work.
Additional Amenities

Student Collaboration Spaces
There are multiple Student Collaboration Spaces in Building 405 which can be used for group project discussions and presentations. These Collaboration Spaces can be found in the following locations: 405-321, 405-323, 405-325, 405-421, 405-423, 405-425, 405-427. These spaces can be booked by using the tablet outside the Collaboration rooms.

Leech Study area
The Leech Study Area is a space for Engineering students to complete individual or group work. It is located on Level 3 of Building 401.

Smart Lockers
There are Smart lockers located across the Engineering building in the following locations: These lockers can be used during the day between the hours of 7.30am to 12:00am. Smaller lockers can be used for up to 3 hours and larger lockers can be used for the day. These lockers are for daily use only need to be cleared and released by the end of day.
Access to these lockers are granted at the same time as building access by providing the barcode on your student ID card. If you have any issues accessing the lockers, please contact the Facilities Team at foe-facilities@auckland.ac.nz.
The lockers can be found in the following locations: B405 Level 1 Lift Lobby, B405 Level 2 Opposite of MDLS Flexi 5-6, B401 L2 Lift Lobby at MDLS Flexi 1, B405 L3 North Corridor at MDLS Computer 5 & 6

Printing, Copying and Scanning
For your convenience, there are multiple Follow-Me printers, installed on most levels of B405. In B405 Levels 1-3 and 5 printers can be found in the central atrium areas and on Levels 6-11 in the print resource rooms.
Examples of practical work

<table>
<thead>
<tr>
<th>Biomedical Engineering</th>
<th>Sub-professional Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Engineering</td>
<td>Work associated with skilled trades people or technicians such as: laboratory work, mechanical installation, equipment maintenance, data gathering or analysis, and assistance in software or website development, database design or inventory control.</td>
</tr>
<tr>
<td>Sub-professional</td>
<td>Work associated with professional engineers, medical professionals or medical researchers, involving product or instrument design; development and testing, medical imaging technology; CAD draughting; software development; data gathering or analysis.</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>Work associated with skilled trades people, involving laboratory work, mechanical installation, equipment maintenance, data gathering or analysis, and assistance in software or website development, database design or inventory control.</td>
</tr>
<tr>
<td>Sub-professional</td>
<td>Work associated with professional engineers, medical professionals or medical researchers, involving product or instrument design; development and testing, medical imaging technology; CAD draughting; software development; data gathering or analysis.</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Chemical and Materials Engineering</td>
<td>Work associated with skilled trades people, involving machining, structures, building construction, design, welding, quality control, production assembly or electronics.</td>
</tr>
<tr>
<td>Sub-professional</td>
<td>Work associated with professional engineers in your specialisation, such as operating plants or laboratories in: metal; materials; chemicals; fertilisers; paints; soaps; foods; petrochemical; pulp and paper; dairy; water treatment; environmental or pollution control.</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Civil and Structural Engineering</td>
<td>Work associated with skilled trades people, involving trade skills in: construction, earthmoving; mining, water and wastewater treatment; surveying; roads; traffic and transportation; asset condition; minerals and resources; and environmental monitoring industries.</td>
</tr>
<tr>
<td>Sub-professional</td>
<td>Work associated with professional engineers, including surveying; contract documentation; design and/or draughting; bore hole logging; construction and construction supervision; buildings and structures; geotechnical; earthworks; mining; roads; traffic and transportation; water/wastewater; hydrology/ hydraulics; and environmental engineering.</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Computer Systems</td>
<td>Work associated with skilled trades people, involving the fabrication, manufacture, installation, maintenance and configuration of mechanical, electrical and computer systems.</td>
</tr>
<tr>
<td>Sub-professional</td>
<td>Work associated with professional engineers, involving the installation, design, fabrication and testing of computer-based components; development, maintenance and support of software packages; application of computer-based systems to embedded and/or real-time problems; communication systems and the installation and configuration of networks.</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>General Engineering</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Electrical and Electronic Engineering</td>
<td>Work associated with skilled trades people involving the use of hand tools and machine tools associated with the fabrication, manufacture and/or maintenance of electrical instruments, components or equipment.</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>Work associated with skilled trades people, including laboratory work; mechanical installation or maintenance; computer or testing; data gathering or analysis; assistance in software or website development; surveying or construction site work.</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>Work associated with skilled trades people such as mechanical tradesmen and/or machine tool operators, involving the fabrication, manufacture, maintenance and repair of mechanical components or equipment.</td>
</tr>
<tr>
<td>Mechatronics Engineering</td>
<td>Work associated with skilled trades people involving hand and machine tools for metal cutting/ forming; manufacturing/ assembly of mechanical components or equipment; fabrication, manufacture maintenance of electrical components and configuration of computer systems.</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>Work associated with skilled trades people involving the fabrication, manufacture, installation, maintenance and configuration of mechanical, electrical and computer systems.</td>
</tr>
</tbody>
</table>
Conjoint degrees

Most BE(Hons) conjoint programmes can be completed in five years. They generally consist of 420* points’ worth of courses in engineering, 255 points from the other degree courses, and 15 points from approved General Education courses. Exceptions include conjoints with the LLB and LLB (Hons) and the BAdvSci (Hons).

Combinations currently available

- BE(Hons)/Bachelor of Arts (BA)
- BE(Hons)/Bachelor of Commerce (BCom)
- BE(Hons)/Bachelor of Design (BDes)
- BE(Hons)/Bachelor of Global Studies (BGlobalSt)
- BE(Hons)/Bachelor of Property (BProp)
- BE(Hons)/Bachelor of Law (LLB)
- BE(Hons)/Bachelor of Laws (Honours) (LLB(Hons))
- BE(Hons)/Bachelor of Music (BMus)
- BE(Hons)/Bachelor of Advanced Science (Hons) (BAdvSci(Hons))
- BE(Hons)/Bachelor of Science (BSc)
- BE(Hons)/ Bachelor of Fine Arts (BFA) - subject to approval

The workload for a conjoint programme is higher than for a single degree (usually 135 points per year, compared to 120 points per year for a single degree). The BE(Hons) programme alone is considered to have a high workload, so keep in mind when considering a conjoint programme that:

- There are higher entry requirements for BE(Hons) conjoint programmes: a GPA of at least 5.5 in the last year of full-time study is required if entry to the conjoint is not obtained at Part I.
- You will be dropped from the conjoint programme if you fail to maintain at least a GPA of 4.0 across your most recent academic year of study.

As per the regulations of the University of Auckland, students cannot enrol for courses that have substantially similar content. Thus, certain conjoint programmes (such as a BSc major in Computer Science, Physics, Applied Mathematics, or Statistics) must have formal prior approval from the Faculty of Engineering and may even be declined.

Please note the following restrictions when planning your BE(Hons) conjoint:

Not Permitted

Software Engineering:
- BSc in Computer Science
- BSc in Data Science
- BAdvSci(Hons) in Computer Science
- BCom in Information Systems
- BCom in Information Management

Approval required*

Biomedical Engineering:
- BSc in Physiology or Pharmacology

Computer Systems Engineering:
- BAdvSci(Hons) in Computer Science
- BSc in Computer Science
- BAdvSci(Hons) in Computer Science

Electrical and Electronic Engineering:
- BAdvSci(Hons) in Physics
- BSc in Physics
- BAdvSci(Hons) in Applied Physics

Engineering Science:
- BSc in Mathematics
- BSc in Applied Mathematics
- BAdvSci(Hons) in Mathematics
- BSc in Physics
- BAdvSci(Hons) in Physics
- BAdvSci(Hons) in Applied Physics
- BSc in Statistics
BE(Hons) conjoint degree regulations

The requirements of the BE(Hons) component of a conjoint degree are the same for all combinations. You must pass at least 420* points’ worth of courses made up of:

- 105 points at Part I: CHEMMAT 121, ELECTENG 101, ENGGEN 115, 121, 131, 140, 199, ENGSCI 111, ACADINT A01
- 210 points at Parts II and III (including ENGGEN 204) from courses listed in the schedule of your chosen BE(Hons) specialisation + ENGGEN 299
- 105 points at Part IV (including ENGGEN 403) from courses listed in the schedule of your chosen BE(Hons) specialisation + ENGGEN 499.

This is 60 points less than the full BE(Hons). This reduction in points is accounted for by:

- Not including the 15 point General Education course in the Engineering component of the conjoint degree
- Omitting a 15 points elective course at Part II or III
- Completing course (or courses) in your other component degree that covers content related to ENGGEN 303, so you do not do ENGGEN 303. (These courses are noted on the conjoint planners, see later in this section).
- Omitting 15 points from Part IV electives

There are specific regulations related to the other degree component of your conjoint programme. Please consult the Conjoint Degrees’ Regulations in the *University of Auckland Calendar* and relevant faculty handbooks to ensure you fulfil the requirements.

Planning a conjoint programme

Planning a conjoint degree can be complex. Your timetable will be a major constraint when selecting your courses. As a conjoint student you will choose your preferred Engineering specialisation at the end of Part I, along with single BE(Hons) students. This choice will guide your course selection for Parts II-IV of your BE(Hons). You are advised to select your BE(Hons) courses first and then fill your points with courses from your other degree, as the latter usually provides more timetable flexibility. Depending on the conjoint programme, you may be exempt from courses in the other component if an Engineering course covers similar content. It is recommended that you discuss your courses each year with advisers from both faculties, as well as consulting your programme requirements in Student Services Online.

The BE(Hons) degree regulations specify that Part I be completed before Part II, which must be completed before Part III, and so forth. While this may not be possible for conjoint enrolments, you should try to follow the principle as closely as possible. When selecting your Engineering courses, discuss your courses with the departmental course adviser to ensure you are covering all necessary prerequisites for your chosen specialisation. You can find the list of course advisers online here: www.auckland.ac.nz/en/engineering/study-with-us/study-options/courses/academic-advisers.html.

for students starting a conjoint with BE(Hons) in 2019 or later
Conjoint planners
Detailed conjoint planners specific to each BE(Hons) specialisation are available at the Engineering Student Centre and on the Faculty of Engineering website here: www.auckland.ac.nz/en/engineering/study-with-us/study-options/courses/conjoint-degrees.html. Information on the requirements of your other degree components can be found in the University of Auckland Calendar. You are advised to visit the relevant Student Centres to ensure you are enrolling in the correct courses, or see the tables for your specialisation later in this handbook.

Enrolment - Conjoint Students
It is advised that you prioritise enrolment in your BE(Hons) courses, as these course schedules can be inflexible and places fill quickly. Remember that you are still required to meet the requirements to be allocated to a specialisation in the following year, and should try to focus on keeping your GPA high in your Engineering courses.

Further opportunities for undergraduate students

Auckland Programme for Space Systems (APSS)
The APSS is designed for students of any area of study throughout the University to collaborate in teams to contribute broadly towards the field of space research. It features an annual student-led competition leading to the construction and launch of a satellite into low orbit. For more information, visit www.space.ac.nz

Dean’s Leadership Programme (DLP)
This is the Faculty of Engineering’s initiative for Part II and III students to develop non-academic skills relevant to an engineering career. It involves mentoring sessions, networking opportunities and internships. Former Vice Chancellor, and Faculty of Engineering alumni, Sir Colin Maiden is the patron of this programme. Interested students are encouraged to contact foe-dlp@auckland.ac.nz.

Study abroad
The University’s 360° Auckland Abroad programme lets you complete part of your degree overseas, with a choice of more than 100 universities in 24 countries. As a University of Auckland student, you may be able to study at an overseas partner university of equal standing for a semester. You can enjoy the benefits of the exchange agreement – you’ll pay tuition only to the University of Auckland, be eligible to apply for scholarships, and bring credits you’ve earned overseas to your BE(Hons).

• To be eligible to study abroad, you must have a cumulative GPA of 5.0 from your BE(Hons) study, a 5.0 term GPA in the semester prior to departure, and be approved by the faculty.
• BE(Hons) students are permitted to credit a maximum of 60 points of Engineering courses while on exchange. Exchange for BE(Hons) is permitted only in Semester Two of Part II, or either semester of Part III of the degree. Conjoint students may take courses to credit towards their other degree component or a separate period of exchange if permitted by their other degree.
• You can’t study abroad during Part IV of a BE(Hons). The faculty will not sanction the omission of any points from your GPA at Part IV, as this counts highly for Honours. No Part IV
courses are to be taken abroad.

- Courses taken on exchange are ungraded, they cannot contribute to your Honours GPA, but are recorded on the Student Transcript as “credit”.
- Covid-19 may limit opportunities for exchange.
- Please note there are also Virtual opportunities.

For more information visit

Beyond your degree

Graduation

Once you have completed all requirements for your programme you can attend your graduation ceremony and receive your degree in person, or have your degree conferred in absentia. See www.auckland.ac.nz/graduation.

Qualification as a professional engineer

To be a fully-qualified professional engineer, you must meet two separate requirements. One of these relates to academic qualifications and the other to subsequent work experience. Satisfying the academic requirements normally means holding a degree which has been approved by Engineering New Zealand (formerly IPENZ), such as the University of Auckland BE(Hons) degree. After graduation you must demonstrate your competence as a practising engineer through work experience. This experience must be of an appropriate type and duration to enable you to apply for professional membership with Engineering NZ. Typically this membership requires a minimum of three years’ experience in the workforce including field, plant and design experience, and at least one year in a responsible position. For further information, visit www.engineeringnz.org.
What will I study?

In Parts II and III of the Biomedical Engineering specialisation, you will take courses that provide you with a solid foundation in:

- mathematics
- mechanics
- bioinstrumentation
- engineering design and computation

In addition to medical science courses in biology and physiology.

Part IV provides scope to specialise: you can focus on areas that interest you most, such as:

- biomedical imaging
- biotechnology
- medical devices
- computational physiology
- sports science

You will also carry out your own research project based on problems relevant to industry or research.

In the past, students have worked on a wide variety of projects including:

- orthopaedic implant design
- needle-free jet injection
- respiratory technologies
- tissue and genetic engineering
- instrument design
- sports biomechanics
- cardiac diagnostic imaging

You will have excellent facilities and outstanding expertise at your fingertips within the Faculty of Engineering, the Auckland Bioengineering Institute, the Faculty of Medical and Health Sciences, and the Faculty of Science.

Keen to find out more?

Find out more online at https://www.auckland.ac.nz/en/study/study-options/find-a-study-option/biomedical-engineering.html

Undergraduate course advisor

Dr Vinod Suresh
bme-undergrad-adviser@auckland.ac.nz

“I’ve always been interested in biology and physics but never really chemistry. I wanted to know how the human body worked and maybe how I could help improve it, using science and engineering. Because of this, coming into university I always knew I wanted to pursue Biomedical Engineering.”

Misha Garg
Biomedical Engineering student
Courses outlined here for Parts II, III and IV of the Biomedical Engineering specialisation are being taught in 2021.

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>BIOMENG 221 Mechanics of Engineered and Biological Materials</td>
<td>BIOMENG 241 Instrumentation and Design</td>
<td>BIOMENG 321 Continuum Modelling in Bioengineering</td>
<td>BIOMENG 341 Bio-instrumentation and Design</td>
<td>ENGSCI 700A Research Project</td>
<td>ENGSCI 700B Research Project</td>
</tr>
<tr>
<td>BIOSCI 107 Biology for Biomedical Science: Cellular Processes and Development</td>
<td>BIOMENG 261 Tissue and Biomolecular Engineering</td>
<td>ENGGEN 303 Managing Projects and Innovation</td>
<td>ENGSCI 331 Computational Techniques 2</td>
<td>BIOMENG 791 Advanced Biomedical Engineering Design</td>
<td>ENGGEN 403 Managing a Business</td>
</tr>
<tr>
<td>ENGSCI 211 Mathematical Modelling 2</td>
<td>ENGGEN 204 Professional Skills and Communication</td>
<td>ENGSCI 314 Mathematical Modelling 3ES</td>
<td>MEDSCI 309 Biophysics of Nerve and Muscle</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>ENGSCI 233 Computational Techniques and Computer Systems</td>
<td>MEDSCI 142 Biology for Biomedical Science: Organ Systems</td>
<td>MEDSCI 205 The Physiology of Human Organ Systems</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part III Elective Options:

- Semester One
 - CHEM 392
 - MECHENG 313
- Semester Two
 - CHEM 380
 - COMPYSYS 303
 - ENGGSCI 344
 - ENGGSCI 355
 - EXERSCI 303
 - MATHS 362
 - MECHENG 352
 - MECHENG 371
 - MEDSCI 305*
 - MEDSCI 312
 - MEDSCI 314

Part IV Elective Options:

- Semester One
 - CHEMMAT 753
 - ELECTENG 722
 - ELECTENG 733
 - ENGGSCI 711
 - ENGGSCI 740
 - ENGGSCI 753
 - MECHENG 743
 - MEDSCI 703
- Semester Two
 - BIOMENG 771
 - CHEMMAT 754
 - CHEMMAT 757
 - COMPYSYS 705
 - ENGGSCI 712
 - ENGGSCI 741
 - MATHS 765
 - MEDSCI 737

Or up to 30 points from an approved 700 level course

Please note:

- Students are also required to complete ENGGEN 299 Workshop Practice in Part II and ENGGEN 499 Practical Work before and during Part IV
- * Not offered in 2021
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook
- Please consult the Biomedical Engineering study tracks for a list of Part II and Part III elective suggestions: www.des.auckland.ac.nz/uoabme-tracks
What will I study?

Many universities offer separate chemical engineering and materials engineering programmes, so the combination of both disciplines offered by the University of Auckland is aimed at providing a real-world skills advantage for our graduates.

Throughout your specialisation, you will gain a solid grounding in:

- applied chemistry
- materials characterisation
- process engineering
- energy
- mathematical modelling

You will also learn about chemical reactor engineering, food process engineering and biotechnology.

You will gain a well-rounded qualification and specialist knowledge that can be applied to a number of key industries, both in New Zealand and abroad.

With a BE(Hons) in Chemical and Materials Engineering, you will have skills that are particularly important to industries typical to chemical engineering – e.g. food production, pharmaceuticals, cosmetics, steel, polymers, ceramics, and waste process and recovery.

Keen to find out more?

Find out more online at https://www.auckland.ac.nz/en/study/study-options/find-a-study-option/chemical-materials-engineering.html

Undergraduate course advisor

A/Prof Woo Meng Wai
wai.woo@auckland.ac.nz

“Chemical and Materials Engineering at the University of Auckland is a unique degree – most other universities offer either materials science or process engineering, but not both. The combination of these two disciplines gives us a much broader knowledge of chemical engineering, which will be invaluable in industry.”

Emily Badley
Chemical and Materials student
Courses outlined here for Parts II, III and IV of the Chemical and Materials Engineering specialisation are being taught in 2021.

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>ENGSIC 211 Mathematical Modelling 2</td>
<td>ENGGN 204 Professional Skills and Communication</td>
<td>ENGGN 303 Managing Projects and Innovation</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part III Elective Options:
- Semester Two: CHEMMAT 304, CHEMMAT 754, CHEMMAT 755, CHEMMAT 757
- Semester One: CHEMMAT 724, CHEMMAT 753, CHEMMAT 756, CHEMMAT 760, CHEMMAT 763

Part IV Elective Options:
- Semester Two: CHEMMAT 754, CHEMMAT 755, CHEMMAT 757, CHEMMAT 758, CHEMMAT 759, ENGGN 701, ENGGN 705

Please note:
- Students are also required to complete ENGGN 299 Workshop Practice in Part II and ENGGN 499 Practical Work before and during Part IV.
- All courses in table above are 15 points in value.
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook.
What will I study?
In Part II of the Civil Engineering specialisation, you will learn the fundamentals of:

- environmental principles
- fluid mechanics
- geotechnical engineering
- material science
- civil engineering design
- construction management

In Parts III and IV, you will be able to tailor your electives to focus on either civil or environmental engineering, or maintain a broad coverage of both if preferred.

Regardless of your focus, you will learn how to apply technical maths and science knowledge to the designs of major construction projects, while practising skills in teamwork, management, creativity and communication.

Keen to find out more?
Find out more online at https://www.auckland.ac.nz/en/study/study-options/find-a-study-option/civil-engineering.html

Undergraduate course advisors
Direct Entry: Dr Tam Larkin
t.larkin@auckland.ac.nz

Part II: Dr Febelyn Reguyal
f.reguyal@auckland.ac.nz

Parts II/III and III: Dr Lucas Hogan
lucas.hogan@auckland.ac.nz

Parts III/IV and IV: Dr Gary Raftery
g.raftery@auckland.ac.nz

Conjoints: Dr Quincy Ma
c.q.ma@auckland.ac.nz

Exchange: Dr Minh Kieu
minh.kieu@auckland.ac.nz

“The most valuable thing I’m getting out of my studies is a broader knowledge of how the world works; in the first year you get a taste of nine engineering disciplines, so you get an appreciation for how everything works. Another highlight is being independent and learning about things I enjoy, plus meeting a range of people – it’s such a diverse community here.”

Joel Kavenga
Civil Engineering student
Only courses outlined here for Parts II will be occurring in 2021 (Part III in 2022, Part IV in 2023). Students enrolled in the BE(Hons) prior to 2020 will complete their degree under the 2019 Calendar Regulations. See Appendix for more details.

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>CIVIL 202 Fluid Mechanics and Pipe Flow</td>
<td>CIVIL 200 Intro to Geotechnical Engineering</td>
<td>CIVIL 300 Geotechnical Engineering</td>
<td>CIVIL 302 Hydrology and Open Channel Flow</td>
<td>CIVIL 705A Research Project</td>
<td>CIVIL 705B Research Project</td>
</tr>
<tr>
<td>ENGSCI 211 Mathematical Modelling 2</td>
<td>ENVENG 200 Fundamentals of Environmental Engineering</td>
<td>ENVENG 300 Natural and Built Environmental Processes</td>
<td>ENGSCI 311 Mathematical Modelling 3</td>
<td>CIVIL 790 Civil Engineering Administration</td>
<td>ENGG 403 Managing a Business</td>
</tr>
<tr>
<td>STRCTENG 200 Introductory Structural Mechanics</td>
<td>STRCTENG 201 Civil Engineering Materials and Design</td>
<td>STRCTENG 304 Structural Design for Civil Engineers</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part III Elective Options:

- Semester Two
 - CIVIL 301
 - CIVIL 304
 - CIVIL 305

Or other approved stage III courses

Part IV Elective Options:

- Semester One
 - CIVIL 700
 - CIVIL 722
 - CIVIL 726
 - CIVIL 729
 - CIVIL 731
 - CIVIL 733
 - CIVIL 735
 - CIVIL 736
 - CIVIL 741
 - CIVIL 750
 - CIVIL 756
 - ENVENG 701
 - ENVENG 740
 - ENVENG 747

Please note:

- Students are also required to complete ENGG 299 Workshop Practice in Part II and ENGG 499 Practical Work before and during Part IV
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook.
What will I study?
As it’s not possible to provide a lasting professional education based on the technology alone, a BE(Hons) in Computer Systems Engineering provides a well-rounded foundation that will equip you for this dynamic and rapidly changing field.

You will study a combination of fundamental knowledge in computer systems, practical skills in hardware and software design and general problem solving skills required for designing and building systems.

You will undertake stimulating project work and be exposed to a variety of existing and innovative electronic, hardware and software technologies.

You will learn about:
- embedded systems
- computational intelligence
- computer architecture
- distributed computing
- information engineering
- intelligent robotics
- industrial decision support systems
- home automation
- automobiles
- instrumentation

All of this is supplemented with a solid grounding in electrical and electronic engineering.

Keen to find out more?
Find out more online at
https://www.auckland.ac.nz/en/study/study-options/find-a-study-option/computer-systems-engineering.html

Undergraduate course advisor
Dr Kevin Wang
kevin.wang@auckland.ac.nz

“Computer Systems Engineering is an intersection between Electrical and Software Engineering, so we cover a wide range of topics. I feel this helped me quickly learn new and unfamiliar skills, and to define the specific areas I’d like to work in when I finish University.”

Forest Fraser
Computer Systems student
Only courses outlined here for Parts II will be occurring in 2021 (Part III in 2022, Part IV in 2023). Students enrolled in the BE(Hons) prior to 2020 will complete their degree under the 2019 Calendar Regulations. See Appendix for more details.

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>ENGSCI 211 Mathematical Modelling 2</td>
<td>ENGGEN 204 Professional Skills and Communication</td>
<td>ENGSCI 313 Mathematical Modelling 3ECE</td>
<td>Elective A</td>
<td>Elective A</td>
<td>Elective A</td>
</tr>
<tr>
<td>SOFTENG 281 Object-Oriented Programming</td>
<td>Elective</td>
<td>Elective B</td>
<td>Elective A or B</td>
<td>Elective A or B</td>
<td>Elective A or B</td>
</tr>
</tbody>
</table>

Part II Elective Options:
- Semester Two
 - ELECTENG 204
 - SOFTENG 283
 - SOFTENG 284

Part III Elective A Options:
- Semester Two
 - COMPSYS 303
 - COMPSYS 304
 - COMPSYS 306

Part IV Elective A Options:
- Semester One
 - COMPSYS 701
 - COMPSYS 704
 - COMPSYS 705
 - COMPSYS 723
 - COMPSYS 726
 - COMPSYS 725

Part III Elective B Options:
- Semester One
 - COMPSYS 302
 - SOFTENG 350

Part IV Elective B Options:
- Semester Two
 - ELECTENG 722
 - ELECTENG 723
 - ELECTENG 724
 - ELECTENG 734
 - SOFTENG 701
 - SOFTENG 751

- Or other approved 700 level course

Please note:
- Students are also required to complete ENGGEN 299 Workshop Practice in Part II and ENGGEN 499 Practical Work before and during Part IV
- * Not offered in 2021
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook
What will I study?
In addition to core courses in mathematics, design, mechanics and computational techniques, you will be able to choose elective courses in areas that interest you most. You might align with one of the themes of Engineering Science: Operations Research involves mathematically describing and optimising real-world scenarios in order to design the best solutions to practical problems, such as optimising the positioning of ambulances around a city.

Computational Mechanics uses mathematics, physics and computers to examine the response of materials and components - for instance, how a car is damaged when it crashes, or how a bubble rises. Other study areas include:
- environmental modelling
- biomedical engineering
- data analytics
- financial mathematics
The diverse range of options available throughout your degree will directly contribute to your own professional versality.

Keen to find out more?
Find out more online at https://www.auckland.ac.nz/en/study/study-options/find-a-study-option/engineering-science.html

Undergraduate course advisor
Dr Tony Downward
engsci-undergradadviser@auckland.ac.nz

Conjoint/Exchange: A/Prof. Cameron Walker
cameron.walker@auckland.ac.nz

“I chose Engineering Science because it sounded diverse, interesting and challenging – everything I wanted from my degree and university experience! It also played to my strengths of calculus and statistics. The University of Auckland is the only place in New Zealand you can do Engineering Science, so it was an obvious choice for me.”

Ryan Tonkin
Engineering Science student
Courses outlined here for Parts II, III and IV of the Engineering Science specialisation are being taught in 2021.

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>BIOMENG 221</td>
<td>ENGGEN 204</td>
<td>ENGGEN 303</td>
<td>ENGGSCI 331</td>
<td>ENGSCI 700 A</td>
<td>ENGSCI 700 B</td>
</tr>
<tr>
<td>Mechanics of Engineered and Biological Materials</td>
<td>Professional Skills and Communication</td>
<td>Managing Projects and Innovation1</td>
<td>Computational Techniques 2</td>
<td>Research Project</td>
<td>Research Project</td>
</tr>
<tr>
<td>ENGSCI 211</td>
<td>ENGSCI 263</td>
<td>ENGSCI 314</td>
<td>ENGSCI 363</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Mathematical Modelling 2</td>
<td>Engineering Science Design 1</td>
<td>Mathematical Modelling 3ES</td>
<td>Engineering Science Design II</td>
<td></td>
<td>Managing a Business</td>
</tr>
<tr>
<td>ENGSCI 233</td>
<td>Elective</td>
<td>ENGSCI 343</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Computational Techniques and Computer Systems</td>
<td></td>
<td>Mathematical and Computational Modelling in Mechanics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGSCI 255</td>
<td>Elective</td>
<td>ENGSCI 391</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Modelling and Analytics in Operations Research</td>
<td></td>
<td>Optimisation in Operations Research</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II Elective Options:</th>
<th>Part III Elective Options:</th>
<th>Part IV Elective Options:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester Two</td>
</tr>
<tr>
<td>COMPSCI 225</td>
<td>BIOMENG 241</td>
<td>BIOMENG 341</td>
</tr>
<tr>
<td>STATS 210</td>
<td>COMPSCI 225</td>
<td>ENGSCI 309*</td>
</tr>
<tr>
<td>SOFTENG 281</td>
<td>ENGSCI 205</td>
<td>ENGSCI 344</td>
</tr>
<tr>
<td>BIOMENG 211</td>
<td>MECHENG 211</td>
<td>ENGSCI 355</td>
</tr>
<tr>
<td></td>
<td>STATS 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Or other approved course above stage I | Or other approved course above stage II | Or other approved 700 level course |

Please note:
- Students are also required to complete ENGGEN 299 Workshop Practice in Part II and ENGGGEN 499 Practical Work before and during Part IV
- * Not offered in 2021
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook”
What will I study?

The pace of change in electrical and electronic engineering is so rapid it’s neither possible nor desirable to cover all aspects of current technology within a four-year degree programme, even in a focused field of specialisation. With our programme you will get a solid foundation of basic science, electrical engineering fundamentals, engineering project management and selected fields of emerging electrical/electronic technologies and platforms. You can later build upon this as you progress in your career as a professional engineer.

In Part II, you’ll learn about:

- electrical materials and electronic devices
- circuit theory
- software design and mathematical modelling tools

We provide an introduction to engineering electromagnetics and computer systems. The programme is broadened by examining how engineers communicate material of a complex and technical nature.

These strands of knowledge are further developed in core courses of Part III. Elective courses of your choice throughout Parts III and IV allow you to further specialise in specific areas that interest you.

Keen to find out more?

Find out more online at

Undergraduate course advisor

Dr Mark Andrews
m.andrews@auckland.ac.nz

“One of the things that stands out to me in my studies is the different ways of thinking to solve engineering problems. We don’t just consider economic impacts but also environmental, social and cultural aspects. The lecturers and teaching assistants here are outstanding. They genuinely care and want students to succeed. They really go out of their way to help us develop as engineers.”

Murali Krishna Magesan
Electrical and Electronic student
Only courses outlined here for Parts II will be occurring in 2021 (Part III in 2022, Part IV in 2023). Students enrolled in the BE(Hons) prior to 2020 will complete their degree under the 2019 Calendar Regulations. See Appendix for more details.

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>COMPSYS 201 Fundamentals of Computer Engineering</td>
<td>ELECTENG 204 Electrical Engineering Electromagnetics</td>
<td>ELECTENG 310 Electrical Engineering Design 1</td>
<td>ELECTENG 311 Electrical Engineering Design 2</td>
<td>ELECTENG 700A Research Project</td>
<td>ELECTENG 700B Research Project</td>
</tr>
<tr>
<td>ELECTENG 291 Fundamentals of Electrical Engineering</td>
<td>ELECTENG 209 Analogue and Digital Design</td>
<td>ENGEN 303 Managing Projects and Innovation</td>
<td>Elective A</td>
<td>ELECTENG 770 Capstone Project</td>
<td>ENGEN 403 Managing a Business</td>
</tr>
<tr>
<td>ENGSCI 211 Mathematical Modelling 2</td>
<td>ENGEN 204 Professional Skills and Communication</td>
<td>ENGSCI 313 Mathematical Modelling 3ECE</td>
<td>Elective A</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>SOFTENG 281 Object-Oriented Programming</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part II Elective Options:
- Semester Two
 - ELECTENG 292
 - SOFTENG 283
 - SOFTENG 284

Part III Elective A Options:
- Semester Two
 - ELECTENG 305
 - ELECTENG 309
 - ELECTENG 331
 - ELECTENG 332

Part III Elective B Options:
- Semester One
 - COMPSYS 302
 - COMPSYS 305
 - ELECTENG 307
 - SOFTENG 350

Or other approved course above stage II

Please note:
- Students are also required to complete ENGGEN 299 Workshop Practice in Part II and ENGGEN 499 Practical Work before and during Part IV
- * Not offered in 2021
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook
What will I study?
As a Mechanical Engineering student, you will learn the fundamentals of:

- dynamics
- fluid mechanics and thermodynamics
- industrial engineering
- control systems
- solid mechanics and materials

You will then apply this theory to practical problems, while practising essential aspects of professional engineering including design, communication and project management.

In Part IV, you will be able to choose elective courses to specialise in a field that interests you. Throughout our specialisation we emphasise design and project work, so that you are able to practice applying your knowledge to the development of new products.

Keen to find out more?
Find out more online at https://www.auckland.ac.nz/en/study/study-options/find-a-study-option/mechanical-engineering.html

Undergraduate course advisors
Dr Jaspreet Dhupia
j.dhupia@auckland.ac.nz

Conjoints: Stuart Norris
s.norris@auckland.ac.nz

Exchange: Dr Vladislav Sorokin
v.sorokin@auckland.ac.nz

“I love learning about the world we live in and how things work. It’s the simplest way to say what I enjoy about studying Mechanical Engineering – discovering how to get from the start of something with some manufactured parts to a system that works together to complete a function. Engineering offers many possibilities, and doing a conjoint degree opens up even more options for me.”

Claire Wang
Mechanical student
Courses outlined here for Parts II, III and IV of the Mechanical Engineering specialisation are being taught in 2021.

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>ENGSCI 211 Mathematical Modelling 2</td>
<td>ENGGEN 204 Professional Skills and Communication</td>
<td>ENGGEN 303 Managing Projects and Innovation</td>
<td>ENGSCI 311 Mathematical Modelling 3</td>
<td>MECHENG 700A Research Project</td>
<td>MECHENG 700B Research Project</td>
</tr>
<tr>
<td>MECHENG 235 Design and Manufacture 1</td>
<td>MECHENG 211 Thermofluids</td>
<td>MECHENG 322 Control Systems</td>
<td>MECHENG 311 Thermal Engineering</td>
<td>MECHENG 731 Engineering Design 4M</td>
<td>ENGGEN 403 Managing a Business</td>
</tr>
<tr>
<td>MECHENG 242 Mechanics of Materials 1</td>
<td>MECHENG 222 Dynamics</td>
<td>MECHENG 334 Engineering Design 3M</td>
<td>MECHENG 325 Dynamics of Fluids and Structures</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>MECHENG 236 Design and Manufacture 2</td>
<td>MECHENG 340 Mechanics of Materials 2</td>
<td>MECHENG 352 Manufacturing Systems</td>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II Elective Options:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
</tr>
<tr>
<td>MECHENG 201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part IV Elective Options:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
</tr>
<tr>
<td>MECHENG 712</td>
</tr>
<tr>
<td>MECHENG 713</td>
</tr>
<tr>
<td>MECHENG 722</td>
</tr>
<tr>
<td>MECHENG 743</td>
</tr>
<tr>
<td>MECHENG 752</td>
</tr>
<tr>
<td>Semester Two</td>
</tr>
<tr>
<td>MECHENG 715</td>
</tr>
<tr>
<td>MECHENG 724</td>
</tr>
<tr>
<td>MECHENG 726</td>
</tr>
<tr>
<td>MECHENG 747</td>
</tr>
<tr>
<td>Or other approved 700 level course</td>
</tr>
</tbody>
</table>

Please note:
- Students are also required to complete ENGGEN 299 Workshop Practice in Part II and ENGGEN 499 Practical Work before and during Part IV
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook.
What will I study?

In Part II, Mechatronics students are provided with a strong foundation in core mechanical engineering subjects. This is supplemented with an emphasis on software design and electronics courses.

During Part III, the balance between mechanical, electrical and computer engineering courses is almost equal.

You will study topics including:

- software design
- sensors and actuators
- signal processing
- analogue and digital circuit design
- systems modelling
- digital control
- industrial automation

These will guide you towards various projects in Part IV that require comprehensive knowledge across the disciplines.

A particular feature of the degree programme is the strong emphasis placed on design and project work, in which students apply their knowledge to the development of new products, and learn to develop skills in teamwork and communication.

Keen to find out more?

Find out more online at https://www.auckland.ac.nz/en/study/study-options/find-a-study-option/mechatronics-engineering.html

Undergraduate course advisors

Dr Yusuke Hioka
y.hioka@auckland.ac.nz

Exchange: Dr Vladislav Sorokin
v.sorokin@auckland.ac.nz

“Getting into a specialisation is competitive, but the great thing is that engineers are all very supportive of each other. People are very interested in working together rather than working against each other. In terms of lecturers, the passion in what people do is definitely present and that's what I really enjoy about the faculty.”

Tomas Haver
Mechatronics student
Courses outlined here for Parts II, III and IV of the Mechatronics Engineering specialisation are being taught in 2021.

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>ENGSCI 211 Mathematical Modelling 2</td>
<td>ENGGEN 204 Professional Skills and Communication</td>
<td>ENGGEN 303 Managing Projects and Innovation</td>
<td>ENGSCI 311 Mathematical Modelling 3</td>
<td>MECHENG 700A Research Project</td>
<td>MECHENG 700B Research Project</td>
</tr>
<tr>
<td>MECHENG 235 Design and Manufacture 1</td>
<td>MECHENG 211 Thermofluids</td>
<td>MECHENG 313 Design of Real-Time Software</td>
<td>MECHENG 312 Sensor and Actuators</td>
<td>MECHENG 705 Mechatronics Systems</td>
<td>ENGGEN 403 Managing a Business</td>
</tr>
<tr>
<td>MECHENG 242 Mechanics of Materials 1</td>
<td>MECHENG 222 Dynamics</td>
<td>MECHENG 322 Control Systems</td>
<td>MECHENG 325 Dynamics of Fluids and Structures</td>
<td>MECHENG 706 Mechatronics Design</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>MECHENG 270 Software Design</td>
<td>MECHENG 370 Electronics and Signal Processing</td>
<td>MECHENG 371 Digital Circuit Design</td>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part II Elective Options:
- Semester One
 - MECHENG 201

Part IV Elective Options:
- Semester One
 - COMPSYS 726
 - MECHENG 709
 - MECHENG 712
 - MECHENG 722
 - MECHENG 743
 - MECHENG 752
- Semester Two
 - ENGGEN 705
 - MECHENG 715
 - MECHENG 724
 - MECHENG 726
 - MECHENG 735
 - MECHENG 736
 - MECHENG 747

Or other approved 700 level course

Please note:
- Students are also required to complete ENGGEN 299 Workshop Practice in Part II and ENGGEN 499 Practical Work before and during Part IV
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook
What will I study?
The Software Engineering specialisation produces graduates capable of engineering creative, usable, complex, and secure systems that function reliably and can be effectively developed and maintained.

You will build on the general engineering literacy you acquired in Part I by developing specialist software knowledge. You will learn fundamentals of:

- software design and development
- programming languages
- software development processes
- computer organisation and architecture
- operating systems
- data communications
- algorithm design and analysis
- mathematics
- project management
- customer collaboration
- professional ethics

Our degree is co-taught by the Department of Electrical, Computer and Software Engineering and by the School of Computer Science. This means you will receive a strong engineering perspective in addition to skills and knowledge relating to modern computing applications, technology, and systems.

By the end of Part IV, you’ll not only have superior software development training, but also an ability to understand and work through the entire lifecycle of software development and maintenance.

Keen to find out more?
Find out more online at https://www.auckland.ac.nz/en/study/study-options/find-a-study-option/software-engineering.html

Choosing Part II Electives:
Students must carefully choose their electives in Part II as this could allow completion of the requirements of two specialisations (Computer Systems and Software Engineering), thus allowing the potential to change specialisations at the end of Part II.

“...because of its excellent reputation for engineering and computer science. I’d like to get into user interface or games. I enjoy looking at how easy things are to use – being able to work with people to make things accessible and intuitive is really interesting.”

Hannah Sampson
Software Engineering student
Only courses outlined here for Parts II will be occurring in 2021 (Part III in 2022, Part IV in 2023). Students enrolled in the BE(Hons) prior to 2020 will complete their degree under the 2019 Calendar Regulations. See Appendix for more details.

<table>
<thead>
<tr>
<th>Part II</th>
<th>Part III</th>
<th>Part IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
</tr>
<tr>
<td>ENGSCI 211 Mathematical Modelling 2</td>
<td>SOFTENG 206 Software Engineering Design 1</td>
<td>SOFTENG 350 Human Computer Interaction</td>
</tr>
<tr>
<td>SOFTENG 281 Object-Oriented Programming</td>
<td>SOFTENG 283 Software Quality Assurance</td>
<td>Elective A</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
<td>Elective A or B</td>
</tr>
</tbody>
</table>

Part II Elective Options:
- Semester One: ELECTENG 291
- Semester Two: SOFTENG 282

Part III Elective B Options:
- Semester One: COMPSYS 373
- Semester Two: COMPSYS 305
- ENGSCI 313

Part III Elective A Options:
- Semester One: SOFTENG 310
- Semester Two: SOFTENG 351
- SOFTENG 370
- SOFTENG 364

Part IV Elective A Options:
- Semester One: COMPSYS 723
- Semester Two: COMPSYS 726
- ELECTENG 733
- ENGSCI 760
- SOFTENG 701
- SOFTENG 752
- SOFTENG 761

Or other approved 700 level course

Please note:
- Students are also required to complete ENGGEN 299 Workshop Practice in Part II and ENGGEN 499 Practical Work before and during Part IV
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook
What will I study?
Our newest specialisation responds to the increasing demand for professionals who can tackle the complex structural and geotechnical nuances within the broader civil engineering profession.

You’ll be learning from exceptional academics about various aspects of seismic setting, such as:

- mechanical properties and design consideration of common construction material
- design philosophy and verification methods for everyday loading and rare extreme events such as wind storm and earthquakes
- influence of ground condition to structural design
- design and analysis of low-rise and multistorey buildings
- structural response due to dynamic loading

Keen to find out more?
Find out more online at https://www.auckland.ac.nz/en/study/study-options/find-a-study-option/structural-engineering.html

Undergraduate course advisors
Dr Quincy Ma
q.ma@auckland.ac.nz

Dr Lucas Hogan
lucas.hogan@auckland.ac.nz
Only courses outlined here for Parts II will be occurring in 2021 (Part III in 2022, Part IV in 2023).

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>CIVIL 202 Fluid Mechanics and Pipe Flow</td>
<td>CIVIL 200 Intro to Geotechnical Engineering</td>
<td>CIVIL 300 Geotechnical Engineering</td>
<td>ENGSCI 311 Mathematical Modelling 3</td>
<td>CIVIL 705A Research Project</td>
<td>CIVIL 705B Research Project</td>
</tr>
<tr>
<td>CIVIL 203 Transport Design and Geomatics</td>
<td>ENGGEN 204 Professional Skills and Communication</td>
<td>ENGGEN 303 Managing Projects and Innovation</td>
<td>STRCTENG 302 Steel Structures Design</td>
<td>STRCTENG 710 Low Rise Structures Design</td>
<td>CIVIL 756 Capstone Project</td>
</tr>
<tr>
<td>STRCTENG 200 Introductory Structural Mechanics</td>
<td>STRCTENG 201 Civil Engineering Materials and Design</td>
<td>STRCTENG 301 Timber Structures Design</td>
<td>Elective</td>
<td>CIVIL 790 Civil Engineering Administration</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part III Elective Options:
- Semester Two
 - CIVIL 301
 - CIVIL 302
 - CIVIL 303
 - CIVIL 305

Or other approved stage III courses

Part IV Elective Options:
- Semester One
 - CIVIL 700
 - CIVIL 722
 - CIVIL 726
 - CIVIL 729
 - CIVIL 731
 - CIVIL 733
 - CIVIL 735
 - CIVIL 736
 - CIVIL 741
 - CIVIL 750
 - CIVIL 782
 - ENVENG 701
 - ENVENG 740
 - ENVENG 747

Or other approved 700 level course

Please note:
- Students are also required to complete ENGGEN 299 Workshop Practice in Part II and ENGGEN 499 Practical Work before and during Part IV.
- All courses in table above are 15 points in value.
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook.
Course descriptions

Biomedical Engineering

Part II

BIOMENG 221 (15 Points)
Mechanics of Engineered and Biological Materials
Introduction to the laws of conservation of mass, linear momentum, angular momentum and energy and their application to engineering problems. Topics include control volume analysis, fluid statics, Bernoulli’s equation, heat conduction, diffusion, linear elasticity, stresses and strains specific to direct and torsional loading, material constitutive relationships (including anisotropy, nonlinearity, and viscoelasticity), axial and transverse loading, and pressure loading of engineering structures and biomaterials.
Prerequisite: ENGGEN 150, or ENGSCI 111, or B+ or higher in MATHS 108 or 110 or 150 or 153, or B+ or higher in MATHS 120 and 130.

BIOMENG 241 (15 Points)
Instrumentation and Design
An introduction to engineering instrumentation related to the measurement of biological signals. Topics include: Fundamentals of measurement systems (electric circuits, basic electronics, frequency domain signal analysis and transient analysis, measurement systems). This course will cover the design methodology of instrumentation systems and include an instrumentation design project.
Prerequisite: ELECTENG 101

BIOMENG 261 (15 Points)
Tissue and Biomolecular Engineering
Overview of molecular and tissue engineering principles emphasising biochemical kinetics, gene regulation, cell behaviour and biomedical ethics. Laboratory practice and design project in cell culture and molecular biology techniques. Topics include enzymes and regulation of metabolic pathways, thermodynamic principles of biochemical reactions, systems biology and regulatory motifs in biochemical networks, cell culture techniques, research and medical ethics.
Prerequisite: BIOSCI 107, ENGSCI 211
Restriction: BIOMENG 361

Part III

BIOMENG 321 (15 Points)
Continuum Modelling in Bioengineering
An introduction to continuum modelling approaches to bioengineering problems across a range of spatial scales. Topics include: tensor analysis, molecular and cellular mechanics of striated muscle; finite deformation elasticity and constitutive relations for soft biological materials; conservation equations for momentum, mass and heat transfer in fluids; viscous flow; boundary layers; pure conduction and diffusion; advective transport of mass and heat.
Prerequisite: BIOMENG 221, ENGSCI 211
Restriction: ENGSCI 343

BIOMENG 341 (15 Points)
Bioinstrumentation and Design
Sensors and actuators (temperature, position, force, pressure, flow, bioelectric, optical sensors and instruments). Signals, systems and controls (s-domain signal notation, transfer functions, frequency response functions, block diagrams, the Laplace transform, first and second order systems, characterisation methods, fundamentals of control). Bioinstrumentation design methodology, Biomedical instrumentation design project.
Prerequisite: BIOMENG 241

Part IV

BIOMENG 771 (15 Points)
Musculoskeletal and Orthopaedic Biomechanics
Topics that biomechanical and orthopaedic engineers use in research and industry. Includes
guest lectures from practitioners. Orthopaedic engineering topics cover implant design, material choice, implant stress shielding and bone loss, implant wear and bone remodelling. Musculoskeletal biomechanics topics cover motion capture, inverse kinematics and dynamics, muscle force evaluation, electromyography (EMG), inertial sensors and applications in sports medicine and rehabilitation.

Prerequisite: 15 points from ENGSCI 311, 313, 314

BIOMENG 791 (15 Points)

Advanced Biomedical Engineering Design

An engineering project requiring the application and integration of material taught in lecture courses to the design of medical devices and software to meet client needs. The project also requires consideration of ethical issues, social impact, safety risks, and international regulations.

Prerequisite: BIOMENG 341

Chemical and materials Engineering

Part I

CHEMMAT 121 (15 Points)

Materials Science

Introduction to materials science starting with the fundamentals of atomic structure and bonding and how this builds up a microstructure to create a solid. Metals, polymers, ceramics, electronic materials, composite and biomaterials will be covered and the properties, advantages and disadvantages of each discussed. Considerations such as corrosion, degradation and failure will be studied with a focus on improving design and creating new materials for our future world.

Process Engineering 1: Introduction

Materials and energy balances with and without chemical reaction, materials and energy balances in multiphase systems such as crystallisation, evaporation, drying, humidification, dehumidification, absorption, distillation, extraction and filtration. An introduction to the most important unit operations in the chemical industry, design concept and safety as applied to processing.

Prerequisite: CHEM 110 or 120 or ENGGEN 140

Restriction: CHEMMAT 211

CHEMMAT 202 (15 Points)

Process Engineering 2: Energy and Processing

Introduction to thermodynamics for process engineering. The first and second laws of thermodynamics. Application of thermodynamic concepts in closed systems, flow processes and cycles, refrigeration and liquefaction. Classical chemical thermodynamics including concepts of chemical potential, fugacity and activities; their applications to vapour-liquid equilibria and reacting systems. Multi-component physical equilibria. Multiple reaction equilibria and system-free energy minimisation. Practical examples and applications.

Restriction: CHEMMAT 212

CHEMMAT 203 (15 Points)

Process Engineering 3: Transfer Processes

Restriction: CHEMMAT 213
CHEMMAT 204 (15 Points)

Materials

Prerequisite: CHEMMAT 121

Restriction: CHEMMAT 221

CHEMMAT 205 (15 Points)

Process Design 1

Mechanics of solids and analysis of stress and strain. Introduction to materials selection. Design of thin walled pressure vessels. Application to the design of vessels, tanks, reactors, piping and heat transfer equipment. Introduction to the chemical industry, unit operations, line diagrams and process equipment. Report writing and oral communication skills.

Prerequisite: ENGGEN 121 or equivalent

Restriction: CHEMMAT 231, 232

CHEMMAT 206 (15 Points)

(previously CHEMMAT 242)

Applied Chemistry

Fundamental chemistry required for chemical engineering and materials engineering. Topics may include phase equilibrium, reaction kinetics, thermodynamics, surface chemistry, electrochemistry and polymer chemistry. This course will have an emphasis on problem definition and solution.

Prerequisite: 15 points from ENGGEN 140, CHEM 110, 120

Restriction: CHEMMAT 242

Part III

CHEMMAT 301 (15 Points)

Transfer Processes 2

Principles of continuous and staged processes. Mass transfer in various media, systems and phases. Interrelating equipment design to mass transfer processes. Studies of selected separation processes such as absorption, solvent extraction, and distillation, and membrane processes.

Prerequisite: CHEMMAT 203 or 213, and CHEMMAT 242 or 206

Restriction: CHEMMAT 312

CHEMMAT 302 (15 Points)

Advanced Process Engineering

An in-depth analysis of selected topics that influence the design, operation, and performance of process plants. Topics include: particulate technology, particle mechanics and particle motions, non-Newtonian fluid flow, two-phase solid-liquid and gas-liquid flow, computational fluid dynamics, flow through porous media and packed beds, filtration, centrifugation, fluidisation, variable-analysis of variations in materials and product processing, membrane separation methods and optimisation techniques.

Prerequisite: CHEMMAT 203 or 213

Restriction: CHEMMAT 313, 316, 411

CHEMMAT 303 (15 Points)

Chemical Reactor Engineering

Prerequisite: CHEMMAT 202 and 206,
CHEMMAT 304 (15 Points)
The Future of Energy
Discussion of topical and significant developments in the field of energy transformation, usage and storage in the context of climate change, both globally and in New Zealand. Topics include: energy efficiency, energy storage and applications, sustainability, non-renewable and renewable power generation.
Prerequisite: CHEMMAT 201 or 211
Restriction: CHEMMAT 315

CHEMMAT 305 (15 Points)
Materials Processing and Performance
Materials processing and performance are critical components of a materials science and engineering degree. This course examines the processing and performance of metals, polymers and ceramics. Topics include metal-making, casting, forming, and forms of degradation, such as corrosion. Emphasis is placed on materials applications for process engineering.
Prerequisite: CHEMMAT 204 or 221
Restriction: CHEMMAT 321, 322, 421

CHEMMAT 306 (15 Points)
Process Design 2
Prerequisite: CHEMMAT 201 or 211, and CHEMMAT 205 or 232
Restriction: CHEMMAT 331, 756

Part IV

CHEMMAT 724 (15 Points)
Advanced Materials Characterisation
The underlying theory essential to understanding modern methods of advanced materials analysis including: electron microscopy, surface analysis, atomic force microscopy and nanoindentation. Teaching is highly research informed with examples drawn from the Research Centre for Surface and Materials Science (RCSMS) and involves principles, practical experience and independent project work related to the application of these techniques.
Prerequisite: CHEMMAT 305 or 322

CHEMMAT 750A (15 Points)
CHEMMAT 750B (15 Points)
Design Project
Specification, planning and executing a specific process design project. The detailed considerations in the project to include environmental impact, safety and occupational health issues, material selection, process energy demand and efficiency, costing and economics, process start-up and operation.
Prerequisite: CHEMMAT 306 or 331
Restriction: CHEMMAT 431, 432
To complete this course students must enrol in CHEMMAT 750 A and B

CHEMMAT 751A (15 Points)
CHEMMAT 751B (15 Points)
Research Project
Students are required to submit a report on independent investigation carried out on a topic assigned by the Head of Department of Chemical and Materials Engineering. The work shall be supervised by a member of staff.
Restriction: CHEMMAT 441, 442
To complete this course students must enrol in CHEMMAT 751 A and B
CHEMMAT 752 (15 Points)

Process Dynamics and Control
Application of mathematical modelling and simulation for understanding modern methods of process control via open-ended workshop study projects. Includes rigorous treatment of control fundamentals (dynamics, hardware, transient analysis, feedback, tuning), advanced classical control (feed-forward, cascade), and advanced control (multiple variable control, whole plant control and model predictive control). Research informed with examples from the Industrial Information and Control Centre (I2C2).

Prerequisite: ENGSCI 211
Restriction: CHEMMAT 311, 411, 412

CHEMMAT 753 (15 Points)

Biological Materials and Biomaterials
Fundamentals of biological materials from small-scale building blocks (genes, proteins) to large-scale biological entities (organs, joints). Biomaterial design, material selection and functionalisation and the interaction between biomaterials and the biological tissue. Critique and review recent research on selected topics. Individual and team research projects apply advanced concepts and methods to design and implement a scaffold or implant prototype.

Prerequisite: BIOMENG 221, or CHEMMAT 204 and 205, or CHEMMAT 221 and 232
Restriction: CHEMMAT 422

CHEMMAT 754 (15 Points)

Materials Performance Enhancement
Materials under extreme service conditions – surface engineering, high-temperature corrosion/oxidation. Nanomaterials and nanotechnology – special properties, synthesis and processing techniques, applications in sensing, catalysis and biomedical areas. Advanced manufacturing technology – additive manufacturing, powder metallurgy, and sustainable/green manufacturing. Selected advanced concepts in materials performance enhancement are taught through research based individual projects.

Prerequisite: CHEMMAT 121, and 305 or 322 or equivalent
Restriction: CHEMMAT 423

CHEMMAT 755 (15 Points)

Materials for Energy and Environmental Applications
Electronic properties of materials. Applications in energy storage. Smart materials and devices – magnetic and dielectric materials, sensors and actuators, recording devices. Materials for environmental applications – photo-catalysis and environmental cleaning, membrane materials, and eco-materials. Core concepts related to energy and environmental applications are extended by individual research projects on selected topics.

Prerequisite: CHEMMAT 121, and 305 or 322 or equivalent
Restriction: CHEMMAT 424

CHEMMAT 756 (15 Points)

Food Process Engineering
Application of engineering principles to food processing. Topics include: heating and thermal processing, cooling, freezing and thawing, evaporation, dehydration, the use of membranes and packaging. Innovative food processes: high pressure, pulsed electric, UV, ultrasounds and ohmic heating/cooking), and fundamental areas of engineering relevant for food processing such as heat and mass transfer. Process impact on food safety, quality and preservation.

Prerequisite: CHEMMAT 201 or 211, and 15 points from ENNGEN 150, ENGSCI 111, MATHS 108, 110
Restriction: CHEMMAT 463

CHEMMAT 757 (15 Points)

Engineering Biotechnology
Principles of biochemical engineering. Exploitation of bioreaction and bioprocess systems. Enzyme and microbial reaction kinetics, bioreactor design
and downstream processing. Examples of biochemical process and food industry applications.

Prerequisite: ENGSCI 111 or equivalent

Restriction: CHEMMAT 361, 464, FOODSCI 704

CHEMMAT 758 (15 Points)
Resource Recovery Technologies
Selection and application of resource recovery processes. Examination of a variety of resource recovery technologies. Critical evaluations of the latest research and development in innovative resource recovery techniques. Social and economic aspects as catalysts or obstacles to resource recovery. Includes an independent research project.

CHEMMAT 759 (15 Points)
Industry 4.0 for Chemical Engineering
In-depth coverage of digitalisation and Industry 4.0 in the context of modern biological, chemical, food and materials processing industries. Topics include model building, digital models and digital twins using process simulators, scripting, open source software and data-driven analysis using machine learning concepts, and the application of these to modelling a virtual plant.

Prerequisite: ENGSCI 311

CHEMMAT 760 (15 Points)
Advanced Microbial Technology in Bioprocess Engineering

CHEMMAT 763 (15 Points)
Waste Reduction and Recycling Technologies
Principles, concepts, and technologies in waste minimisation and recycling. Topics include implementation of waste management and recycling technologies, economic analysis of waste recycling and minimisation and the three pillars of sustainability.

Civil Engineering

Part II

CIVIL 200 (15 Points)
Introduction to Geotechnical Engineering
The basic concepts and principles governing the mechanical behaviour of soil. Engineering geology, site investigation and soil classification. The principle of effective stress, permeability and seepage, and soil shear strength.

Restriction: CIVIL 220, 331

CIVIL 201 (10 Points)
Land Information Systems
Aspects of elementary engineering surveying as used for gathering site information for the design and setting out of works. Land information systems, modern methods of gathering, processing and presenting information for engineering purposes.

CIVIL 202 (15 Points)
Fluid Mechanics and Pipe Flow
Fluid properties and definitions, hydrostatics and stability of floating bodies. Fluid flow, energy, continuity and momentum relationships. Dimensional analysis and similarity. Pipe flow: Fluid resistance, friction factor, steady-state pipe flow, simple pipe systems and pipe network analysis, waterhammer

Restriction: CIVIL 230, 331
CIVIL 203 (15 Points)
Transport Design and Geomatics
Introduction to Transportation Engineering (mobility for people and goods, sea, land and air transportation systems). Design and construction of longitudinal infrastructure (plans, longitudinal sections and cross sections, earthworks, quantities, mass haul). Transport geometric design (horizontal, vertical and cross sectional design). Geomatic surveying systems (levelling, theodolites, GPS, drones, digital topographical survey systems and remote sensing).
Restriction: CIVIL 201, 360

CIVIL 210 (15 Points)
Introduction to Structures
Structural forms and systems. Analysis of determinate systems, elasticity. Engineering beam theory, elasticity, failure theories. Introduction to structural design.
Prerequisite: ENNGEN 121 or 150
Restriction: ENVENG 210

CIVIL 211 (10 Points)
Structures and Design 1
Introduction to structural design – philosophy, loads, codes; design of simple structural elements in various materials.

CIVIL 220 (10 Points)
Introductory Engineering Geology

CIVIL 221 (10 Points)
Geomechanics 1
The basic concepts and principles governing the mechanical behaviour of soil, including phase relationships, permeability and seepage, the principle of effective stress, soil strength, compressibility and basic stability analysis.

CIVIL 230 (10 Points)
Fluid Mechanics 1

CIVIL 250 (10 Points)
Civil Engineering Materials and Design

Part III
CIVIL 300 (15 Points)
Geotechnical Engineering
Compaction, settlement and rate of consolidation. Stability analysis in geotechnical engineering, including slope stability, earth pressures on retaining structures and bearing capacity of shallow foundations.
Prerequisite: CIVIL 200
Restriction: CIVIL 322

CIVIL 301 (15 Points)
Foundation Engineering
Design of foundations, both shallow and pile, for buildings and other structures. Assessment of foundation ultimate capacity and working load settlement. Site investigation methods, with particular emphasis on the use of penetrometer tests to estimate soil parameter values. Current foundation construction methods. Design of
embedded retaining walls. Special aspects of house foundation design and construction. Observed foundation performance.

*Prerequisite: CIVIL 300, and STRCTENG 300 or 301 or 304

*Restriction: CIVIL 721

CIVIL 302 (15 Points)

Hydrology and Open Channel Flow

Engineering hydrology: Hydrologic processes, analysis of rainfall-runoff relationships, statistical analysis of hydrological data, groundwater flow. Open channel flow: energy and momentum, uniform flow and flow resistance, critical flow, specific energy and flow force, backwater analysis, channel transitions

*Prerequisite: CIVIL 202

*Restriction: CIVIL 331, ENVENG 333

CIVIL 303 (15 Points)

Transport Operations and Pavements

Traffic engineering, transportation planning and road pavement design. Topics include the main transport planning and traffic design techniques, criteria and fundamentals used in transportation engineering practice, traffic studies, public transport and active modes and transport modelling (micro and macro simulation). Additionally, pavement design, surfacings, traffic loading, mechanistic approaches and rehabilitation of road pavements are included.

*Prerequisite: CIVIL 203

CIVIL 304 (15 Points)

Climate Adaptation Design

Fundamental understanding of the impact of climate change on horizontal infrastructure and the adaptation design and strategies to respond to these changes. Topic areas include the impact of climate on infrastructure, vulnerability studies and adaptation design and management techniques. Studies in knowledge areas of design, management and resilience of transport (roads, ports and wharves), water provision, stormwater and wastewater systems.

*Prerequisite: CIVIL 203

*Corequisite: CIVIL 303

*Restriction: CIVIL 360, 759

CIVIL 305 (15 Points)

Construction Informatics

The application of digital and automation technologies (such as building information modelling, virtual reality/augmented reality, internet of things, laser scanning, drones, artificial intelligence, big data, robotics) in civil engineering and management.

CIVIL 312 (15 Points)

Structures and Design 2

*Prerequisite: CIVIL 211

CIVIL 313 (15 Points)

Structures and Design 3

*Prerequisite: CIVIL 211

CIVIL 314 (10 Points)

Structural Dynamics

Dynamics of single and multi-degree-of-freedom systems. Ground motion, response spectra, time-history and spectral modal analysis; introduction to seismic design.
CIVIL 322 (10 Points)
Geomechanics 2
Stability analysis in geotechnical engineering; slope stability, soil pressures on retaining structures, bearing capacity. Consolidation and settlement.
Prerequisite: CIVIL 221

CIVIL 324 (10 Points)
Geomechanics 3
Prerequisite: CIVIL 322 or equivalent
Restriction: CIVIL 420, 728

CIVIL 331 (10 Points)
Hydraulic Engineering
Prerequisite: CIVIL 230 or equivalent

CIVIL 332 (10 Points)
Fluid Mechanics 2

CIVIL 360 (10 Points)
Transportation Engineering 1
Highway alignment geometrics (horizontal, vertical and cross sectional design). Basis of the main pavement design techniques, pavement materials, stabilisation, compaction and bituminous surfacings.

CIVIL 361 (10 Points)
Transportation Engineering 2

Part IV

CIVIL 700 (15 Points)
Geotechnical Analysis
Shear strength of soil – triaxial testing, measurement of pore water pressures, and interpretation of test data for use in analysis. Introduction to numerical modelling in geotechnical engineering. The use of traditional methods versus numerical modelling in design.
Prerequisite: CIVIL 300
Restriction: CIVIL 324

CIVIL 705A (15 Points)
CIVIL 705B (15 Points)
Research Project
To complete this course students must enrol in CIVIL 705 A and B

CIVIL 710 (15 Points)
Advanced Structural Dynamics
Advanced topics in structural dynamics, such as wave guide representation, holistic consideration of structural behaviour including soil, main and secondary structures interaction, nonlinearities of soil-foundation-structure systems including uplift, pile-soil separation, plastic hinge or pounding. The core skills are taught and accompanied by an
individual project in which independent research is undertaken to solve a challenging structural dynamics problem.

Prerequisite: Departmental approval

CIVIL 713 (15 Points)
Structures and Design 4
Continuation of the design and detailing of structures in structural steel, reinforced concrete, reinforced masonry, and timber including connections in steelwork, composite steel/concrete beams, masonry structures and retaining walls in reinforced masonry. Practical understanding and design of concrete ground floor slabs. Introduction to the NZ Standard for light timber frame construction. Introduction to fire engineering. Techniques in the checking of existing structures and lessons learnt from failures.

Prerequisite: CIVIL 312 and 313 or equivalent
Restriction: CIVIL 411

CIVIL 714 (15 Points)
Multistorey Building Design
Techniques for the design of structures to resist seismic loading. Derivation of design actions, alternative structural systems for resisting these loads, design of structural components subject to cyclic inelastic action, detailing of members and joints to enhance earthquake resistance. Techniques of seismic isolation. Design project.

Prerequisite: CIVIL 313 or equivalent

CIVIL 715 (15 Points)
Advanced Structural Concrete
Design and detailing of prestressed and precast reinforced concrete members subject to axial, flexure, shear, and torsion actions. Design of state-of-art low-damage concrete structural systems. Includes an independent concrete design project and an independent research project on past failures of concrete structures.

Prerequisite: CIVIL 313 or equivalent

CIVIL 718 (15 Points)
Light Gauge Steel
Use of thin steel load bearing structural components in walls, floors and roofs. Behaviour of members and connections under the full range of structural actions. Theory and design application including the Direct Strength Method of design. Use of light gauge steel acting compositely with other materials such as concrete and structural foams.

Prerequisite: CIVIL 313 or equivalent

CIVIL 719 (15 Points)
Matrix Structural Analysis
Direct stiffness method applied to linear, nonlinear and stability analyses. Introduction to variational principles and finite element method. Projects in practical modelling of major structures such as bridges and multi-storey buildings. Use of commercial software.

Restriction: CIVIL 416

CIVIL 721 (15 Points)
Foundation Engineering

Prerequisite: CIVIL 312 or equivalent
Restriction: CIVIL 323, 421

CIVIL 722 (15 Points)
Slope Engineering
Slope failure mechanisms, geological controls and classification. Shear strength of rock and soil materials. Laboratory testing of earth materials for slope stability. Limit equilibrium techniques, including analytical, numerical and graphical
Prerequisite: CIVIL 322 or equivalent
Restriction: ENVENG 324, CIVIL 422

CIVIL 726 (15 Points)
Engineering Geology
Introduction to fundamentals in soil and rock mechanics and their application to engineering projects. Discussion of natural hazards and their implications on infrastructure design. Practical exercises in field mapping, core logging, aerial photograph interpretation, and basic laboratory tests.
Restriction: CIVIL 404, EARTHSCI 372, GEOLOGY 372

CIVIL 729 (15 Points)
Humanitarian Engineering
Evaluate frameworks used in the humanitarian engineering field to assist with human crises, including shelter, standards, law, human rights, resilience, appropriate engineering. Rapid assessments, application of minimum international standards for engineering, engineered shelter solutions, water, sanitation and hygiene and the engineering management of humanitarian crises.

CIVIL 730 (15 Points)
Transport Modelling and Design

CIVIL 731 (15 Points)
Water Resources Modelling
Risk and uncertainty in water resources systems; evaluation of alternatives in water resources; hydrologic modelling; hydraulic modelling; river basin modelling; water resources economics.

CIVIL 732 (15 Points)
Coastal Engineering Design
Deriving design conditions, wave pressures and forces, design of structures, beaches and control structures, introduction to coastal modelling.
Prerequisite: CIVIL 732

CIVIL 733 (15 Points)
Coastal Engineering Dynamics
Waves, wave theories, surf zone processes, sediment transport, dynamics of coastal systems.

CIVIL 734 (15 Points)
River Engineering
Scales; flows; fluvial processes; mixing; ecohydraulics.

CIVIL 735 (15 Points)
Transport Modelling and Design
The planning, modelling, design and operation of current and future transport systems. Topics include transport models and their applications, Intelligent Transport Systems and emerging technologies, transport planning process and travel demand modelling. Transport models are developed to plan, design and manage transport networks based on fundamental modelling concepts, New Zealand specifications and international best practices.
Prerequisite: CIVIL 303
Restriction: CIVIL 758

CIVIL 736 (15 Points)
Transport Safety and Mobility
Develop a sound understanding of safety and mobility of transport systems. Transport safety topics include safe systems, crash reduction studies, road safety audits and at-grade intersection geometric design, economic appraisal methods and transport infrastructure funding. Planning for transport mobility and sustainable transport systems, public transport systems, active modes and travel behaviour.
Prerequisite: CIVIL 203
Restriction: CIVIL 759

CIVIL 741 (15 Points)
Ground Improvements and Geosynthetics Engineering
Advanced ground improvement techniques including: densification, consolidation, preloading and surcharge, soil reinforcement, stabilisation and thermal ground improvement.

Prerequisite: CIVIL 322 or equivalent
Restriction: CIVIL 403

CIVIL 743 (15 Points)
Special Topic: Building Information Modelling
Introduction to the main principles and tools of Building Information Modelling (BIM) in the Architecture-Engineering-Construction (AEC) industry. This course is suitable for different AEC professionals such as civil and structural engineers, architects, among others.

CIVIL 750 (15 Points)
Timber Engineering
The practical understanding of timber and its use in the construction industry. Design and detailing techniques for connections in timber structures, plywood structures, pole structures, timber floor systems, bridges, multi-storey buildings, formwork and falsework, arches and cable stayed systems.

Prerequisite: CIVIL 312 or equivalent
Restriction: CIVIL 451

CIVIL 756 (15 Points)
Capstone Project
Final year team exercise with students in multi-disciplinary civil and environmental roles integrating technical learning into realistic design outcomes. Comprehensive investigation of an open ended, complex, real or synthetic civil engineering problem with simulated professional design office constrains. Includes technical, economic and environmental impact components to complete a scheme assessment report.

Prequisites: 90 points from Part III courses listed in the BE(Hons) Schedule for Civil Engineering.

CIVIL 758 (15 Points)
Traffic Systems Design

Prerequisite: CIVIL 361
Restriction: CIVIL 403, 460, 660

CIVIL 759 (15 Points)
Highway and Transportation Design

Prerequisite: CIVIL 360
Restriction: CIVIL 461, 661

CIVIL 782 (15 Points)
Water Resources Engineering
A selection from the following: reservoir design and optimisation, flood control and design of flood control structures, micro to large scale hydroelectric engineering, river engineering and sedimentation. A water resources engineering design project.

Prerequisite: ENVENG 333 or equivalent
Restriction: CIVIL 480, 482

CIVIL 790 (15 Points)
Civil Engineering Administration
The application of legal principles to problems in civil engineering and environmental engineering management. Examines the administration of national and international engineering contracts.
Discusses statutes affecting engineering business. Investigates the implications of resource management and natural resource allocation legislation on engineering projects. Analyses processes for resolving engineering disputes.

Restriction: CIVIL 401, 490, ENNGEN 734

CIVIL 791 (15 Points)
Construction Management
Understanding topics necessary for effective construction management. Using a generic construction project life cycle, essential aspects of construction projects including the tendering process, preparing tenders, tender evaluation, project planning, resource allocation, teamwork, site safety, and contract types are covered. Case studies are used to reinforce the application of theoretical ideas to the successful running of construction projects.

Restriction: CIVIL 409

Computer Systems Engineering

Part II

COMPSYS 201 (15 Points)
Fundamentals of Computer Engineering
Digital systems and binary coding; binary numbers; Boolean algebra and computer logic; combinational logic circuits; sequential logic circuits; hardware description language; digital design flow; register transfer level descriptions and design; data paths and control units; from circuits to microprocessors; basic computer organisation; introduction to modern microprocessors; timers and interfacing; C and assembly language for microprocessors; designing digital systems using microprocessors.

Prerequisite: ELECTENG 101

COMPSYS 202 (15 Points)
Object Oriented Design and Programming
A project-based course with extensive hands-on programming experience. Includes: an introduction to object oriented design including UML, sequence diagrams, use-case analysis; an introduction to object oriented programming in a modern high level language, algorithms, data abstraction and elementary data structures.

Prerequisite: ENNGEN 131 or ENGSCI 131

Restriction: MECHENG 270

COMPSYS 209 (15 Points)
Computer Systems Design
Project-based course introducing real-world design aspects of hardware and software components of computer systems using appropriate design methodology. Practical skills will be gained in computer aided design tools, printed circuit board design and construction.

Prerequisite: COMPSYS 201, ELECTENG 291, SOFTENG 250 or 281

Restriction: ELECTENG 209

Part III

COMPSYS 301 (15 Points)
Design: Hardware Software Systems
An appreciation of the engineering design process as applied to computer systems. Design skills are enhanced through engineering projects which typically include elements of: computer hardware design, computer software design, system design and control, sensing, actuation and interfacing.

Prerequisite: COMPSYS 305, and COMPSYS 209 or ELECTENG 209, and COMPSYS 202 or SOFTENG 281

COMPSYS 302 (15 Points)
Design: Software Practice
A project-based course to gain experience in software design emphasising problem solving
techniques and applications in computer systems engineering. The course includes practical, real-world project(s) involving a representative subset of the following topics: algorithm and data structure selection and implementation, parsing and translation, object-oriented and multi-threaded programming, scripting languages, peer-to-peer communication over internet.

Prerequisite: COMPSYS 202 or SOFTENG 281

COMPSYS 303 (15 Points)
Microcomputers and Embedded Systems

Prerequisite: COMPSYS 201, and COMPSYS 202 or SOFTENG 251 or 281

COMPSYS 304 (15 Points)
Computer Architecture
Modern processor architectures. Principles of modern processor design; pipelining; memory hierarchies; I/O and network interfacing; compiler and OS support; embedded processors; performance; multiprocessing.

Prerequisite: COMPSYS 201
Restriction: COMPSCI 313

COMPSYS 305 (15 Points)
Digital Systems Design
(previously Digital Systems Design 1)
Digital Systems implementation technologies with emphasis on hardware description languages and design abstraction levels; structural, architectural and behavioral modelling; register-transfer level design; datapath and control units; functional and timing simulations; FPGA-based implementation design flow and case studies.

Prerequisite: COMPSYS 201

COMPSYS 306 (15 Points)
Artificial Intelligence and Machine Learning
Fundamentals of artificial intelligence, including topics from artificial neural networks, fuzzy models, genetic algorithms. Using machine learning as an application of artificial intelligence to use data for training and inference, including topics from convolutional neural networks, deep learning, pattern classification and recognition.

Prerequisite: COMPSYS 201, and COMPSYS 202 or SOFTENG 281

Part IV
COMPSYS 700A (15 Points)
COMPSYS 700B (15 Points)
Research Project
Students are required to submit a report on project work carried out on a Computer Systems Engineering topic assigned by the Head of Department. The work shall be supervised by a member of staff.

Prerequisite: COMPSYS 301, and 45 points from COMPSCI 313, COMPSYS 302-305, ELECTENG 303, 331, 332
Restriction: COMPSYS 401
To complete this course students must enrol in COMPSYS 700 A and B

COMPSYS 701 (15 Points)
Advanced Digital Systems Design
Advanced concepts in digital design including: System-on-Chip (system level description, behavioural and register-transfer descriptions); advanced modelling techniques and design flows; design space exploration and optimisation; hardware-software partitioning and trade-offs; component reusability; reconfigurable systems; low-power systems; case studies (speech, image, video algorithms implementation, application
specific processor design); individual research projects to analyse the problem, model and implement the required hardware-software components.

Prerequisite: COMPSYS 305

COMPSYS 704 (15 Points)

Advanced Embedded Systems

Selected advanced topics from current research in embedded systems such as: embedded systems based on formal models of computation; centralised and distributed architectures for embedded systems; static and dynamic embedded systems; languages and frameworks for distributed embedded systems; actor and agent systems; verification. Includes a significant individual research project.

Prerequisite: COMPSYS 723, and 202 or SOFTENG 281

COMPSYS 705 (15 Points)

Formal Methods for Safety Critical Software

Formal methods for the validation/verification of safety critical software, including machine learning algorithms. Topics covered will include mathematical modelling for embedded, automation, and mechatronic systems; advanced techniques for validation and verification; techniques for formal specification; methods of verification such as Bisimulation and model checking; state space explosion problem and solutions such as BDDs, symbolic model checking, and modular verification; verification of HDL/C using model checking tools. Includes a significant individual research project.

Prerequisite: COMPSYS 202 or ENGSCI 233 or MECHENG 270 or 313 or SOFTENG 211 or 281 or 282

COMPSYS 723 (15 Points)

Embedded Systems Design

Concurrency and models of computation, task models and race conditions, real-time operating systems based approach, synchronous approach, safe state machines, key properties: determinism and reactivity, SoPC and MPSoC, cyber-physical embedded systems, static analysis techniques, case studies in smart grid, automotive, medical devices and the like.

Prerequisite: COMPSYS 303 or 304 or SOFTENG 370

Restriction: COMPSYS 402, 403, 727

COMPSYS 725 (15 Points)

Distributed Cyber-Physical Systems Design

Prerequisite: COMPSYS 201, and COMPSYS 202 or SOFTENG 281

Restriction: COMPSYS 405

COMPSYS 726 (15 Points)

Robotics and Intelligent Systems

Fundamentals of robotic and intelligent systems, including reactive and deliberative functionality, navigation techniques, planning and programming of robot actions, machine learning, artificial neural networks and may include topics in sensors and actuators, kinematic analysis, fuzzy systems, genetic algorithms. Core concepts are extended by an individual research project where a challenging robotics problem is analysed and a solution implemented and tested.

Prerequisite: 15 points from COMPSYS 302, MECHENG 313, SOFTENG 306

Restriction: COMPSYS 406

COMPSYS 732 (15 Points)

Mobile Autonomous Robotics

Techniques and principles for designing and developing mobile robots that interact autonomously with their environment. Topics include sensors and actuators, kinematic analysis,
computer vision, state estimation and planning. Includes significant hands-on experience through the design and development of a mobile robot.

Prerequisite: 15 points from COMPSCI 230, 235, COMPSYS 302, ENGSCI 331, MECHENG 313, SOFTENG 306

COMPSYS 770 (15 Points)

Capstone Project

Final year team exercise with students in multidisciplinary roles, with focus on computer systems engineering and integrating technical learning into realistic design outcomes. Comprehensive investigation of an open ended, complex, real or synthetic computer, electrical and software engineering problem with simulated professional design office constraints. Includes technical, economic and environmental impact components to complete a scheme assessment report.

Prerequisite: Prerequisite: 75 points from Part III courses listed in the BE(Hons) Schedule for the Computer Systems Engineering specialisation

Electrical and Electronic Engineering

Part I

ELECTENG 101 (15 Points)

Electrical and Digital Systems

An introduction to electrical, computer and electronic systems and technology. Digital circuits and analysis techniques, computer organisation. Analog circuits and analysis techniques. Inductive power transfer, power systems and electric machines. Communication systems.

Restriction: ELECTENG 202, 204, 208, 210

Part II

ELECTENG 202 (15 Points)

Circuits and Systems

Aims to provide a good understanding of the way electrical circuits work. It covers DC and AC circuit theorems and analysis; transient analysis, including the Laplace transform; transfer functions; AC power calculations; and time and frequency representation of signals.

Prerequisite: ELECTENG 101

ELECTENG 204 (15 Points)

Engineering Electromagnetics

Electrostatics (Coulomb’s and Gauss’s Laws, scalar potential, energy, capacitance, dielectrics), magnetostatics (Biot-Savart and Ampere’s Laws, moving conductors, magnetic forces/torques, ferromagnetic hysteresis, inductance, magnetic materials), electromagnetic induction (Faraday’s and Lenz’s Laws). Transmission lines subjected to pulse excitation, magnetic circuits and single-phase transformers.

Introduction to computational electromagnetics.

Prerequisite: ELECTENG 101

ELECTENG 209 (15 Points)

Analogue and Digital Design

Project-based course introducing the process of electrical engineering design. Students will research a diverse range of practical problems and develop solutions and prototypes, test and evaluate hardware and software solutions, and communicate the design and results.

Prerequisite: COMPSYS 201, and ELECTENG 202 or 291

ELECTENG 210 (15 Points)

Electronics 1

Semiconductor devices and applications, diodes, bipolar junction transistors and operational amplifiers. Elementary device physics. Linear and non-linear devices, terminal characteristics, small-signal modelling and analysis. Frequency-dependent behaviour of circuits and analysis methods. Linear and non-linear circuits such as amplifiers and switching circuits. Biasing, coupling
and bypass techniques. Operational amplifiers, frequency-dependence and characteristic limitations, frequency selective and non-linear switching circuits.

Prerequisite: ELECTENG 101

ELECTENG 291 (15 Points)
Fundamentals of Electrical Engineering
AC and DC circuit analysis in the context of linear electrical and electronic systems. Time and frequency domain approaches to describing and analysing electrical networks and systems.

Prerequisite: ELECTENG 101
Restriction: ELECTENG 202

ELECTENG 292 (15 Points)
Electronics
Electronic devices and circuits for solving engineering problems. Analysis of linear and nonlinear microelectronic circuits and their practical applications.

Prerequisite: ELECTENG 202 or 291
Restriction: ELECTENG 210

Part III

ELECTENG 303 (15 Points)
Systems and Control
Introduction to linear, time-invariant, continuous-time system theory from both a time-domain and frequency domain standpoint. This leads on to the fundamental body of knowledge underlying the control and enhancement of system behaviour, with application to the analysis and control of electrical systems.

Prerequisite: ELECTENG 202

ELECTENG 305 (15 Points)
Applied Electronics
An advanced treatment of electronic circuits including a rigorous treatment of feedback, device limitations, noise effects, stability, and design considerations. Emphasis on common practical circuits taken from analog and switching applications.

Prerequisite: ELECTENG 202 or 291, and 210 or 292

ELECTENG 307 (15 Points)
Fields and Waves
Transmission lines subjected to AC excitation, the Smith chart, introduction to matching network design and introduction to antennas for radio systems. Maxwell’s equations in differential and integral form, divergence and Stokes’ theorems, skin effect and uniform plane waves (lossless/lossy media, reflection and transmission, polarisation). Case studies in computational electromagnetics.

Prerequisite: ELECTENG 204

ELECTENG 309 (15 Points)
Power Apparatus and Systems
Introduces students to three-phase electric machines and power system components. Covers theory, modelling and practical aspects for synchronous machines, induction machines, transformer connections, transmission lines and substation components.

Prerequisite: ELECTENG 204

ELECTENG 310 (15 Points)
Electrical Engineering Design 1
An appreciation of the design process as applied to various electrical and electronic engineering systems. Design skills are enhanced through a variety of engineering projects which typically introduce students to modelling, simulation and analogue and digital electronic hardware design.

Prerequisite: COMPSYS 201, and COMPSYS 209 or ELECTENG 209, and ELECTENG 202 or 291, and COMPSYS 202 or SOFTENG 281

ELECTENG 311 (15 Points)
Electrical Engineering Design 2
The formal introduction to the design process is completed by one or more open-ended projects which typically include elements of design from concept to working prototype.

Prerequisite: ELECTENG 310

ELECTENG 331 (15 Points)

Signals and Systems

Introduction to continuous-time and discrete-time signals and systems. Spectral analysis and representation of analog and digital signals, and linear, time-invariant systems. Conversion between analog and digital signals. Systems for manipulating and filtering signals in hardware and software.

Prerequisite: ELECTENG 202 or 291

Restriction: ELECTENG 303

ELECTENG 332 (15 Points)

Control Systems

Introduction to modelling in the time-domain and frequency domain. The fundamental body of knowledge underlying the control and enhancement of system behaviour, with application to the analysis and control of systems.

Prerequisite: ELECTENG 202 or 291

Restriction: ELECTENG 303

Part IV

ELECTENG 700A (15 Points)

ELECTENG 700B (15 Points)

Research Project

Students are required to submit a report on project work carried out on a topic assigned by the Head of Department. The work shall be supervised by a member of staff.

Prerequisite: ELECTENG 310, 311, and 30 points from ELECTENG 303, 305, 309, 331, 332

Restriction: ELECTENG 401

To complete this course students must enrol in

ELECTENG 701 (15 Points)

Mobile Wireless Engineering

Aspects of the design and planning of mobile radio systems. Radio propagation for mobile radio systems (multipath, narrowband and wideband channels, channel characterisation and measurements), propagation modelling (free-space, plane-earth, diffraction). Frequency reuse and interference, outage probabilities, system performance evaluation, space diversity, MIMO and millimetre-wave systems.

Prerequisite: ELECTENG 307 or 721 or 737

ELECTENG 703 (15 Points)

Advanced Power Systems

Electricity markets: structure, pricing, optimisation, ancillary services; Power system protection practices; Distribution network development: Smart Grid, Demand Side participation; HVDC and FACT Devices Theory and Application; Renewable energy grid integration.

Prerequisite: ELECTENG 731

Restriction: ELECTENG 738

ELECTENG 704 (15 Points)

Advanced Control Systems

Advanced theory of modern control systems with emphasis on optimisation techniques for both deterministic and stochastic processes. State-space modelling of dynamic systems and choice of suitable performance criteria. Adaptive, nonlinear and sliding mode control systems. Core concepts are extended by an individual research project in which a challenging control problem is analysed and solved.

Prerequisite: ELECTENG 722

ELECTENG 721 (15 Points)

Radio Engineering

Matching networks, waveguides, transmitter/
receiver design, noise, non-linear behaviour, antennas, applications in computational electromagnetics. Fundamentals of radio propagation, tropospheric effects, diffraction, link budgets, point-to-point link design, multipath propagation, introduction to area coverage (mobile radio) systems. Introduction to radar systems, the radio spectrum and exposure standards.

Prerequisite: ELECTENG 307
Restriction: ELECTENG 421, 737

ELECTENG 722 (15 Points)
Modern Control Systems

Prerequisite: ELECTENG 303 or 331 or 332
Restriction: ELECTENG 422, MECHENG 720, 724

ELECTENG 726 (15 Points)
Digital Communications

Prerequisite: ELECTENG 303 or 331, and 732
Restriction: ELECTENG 426, 741

ELECTENG 731 (15 Points)
Power Systems
Builds on the knowledge of three-phase power systems components to understand modelling, formulation and typical analysis carried out by electricity transmission, distribution and generation entities. Load flow, fault, stability and power quality. Supplemented by laboratories where students learn to use professional software to implement the theoretical aspects.

Prerequisite: ELECTENG 307
Restriction: ELECTENG 421, 737

ELECTENG 732 (15 Points)
Communication Systems

Prerequisite: ELECTENG 303 or 331
Restriction: ELECTENG 412

ELECTENG 733 (15 Points)
Digital Signal Processing

Prerequisite: ELECTENG 303 or 331 or ENGSCI 311 or 313
Restriction: ELECTENG 413
ELECTENG 734 (15 Points)

Power Electronics

Selected advanced concepts in power electronics are introduced through a practical and research based individual design project, utilising modern power converter topologies with supporting lectures that include: inductive power transfer and control, DC-DC converter design and control, high frequency magnetics design, semiconductor switches, practical design issues, controlled rectifiers and PWM converters with application to conventional and brushless DC motors.

Prerequisite: ELECTENG 305, 310, 311
Restriction: ELECTENG 703

ELECTENG 735 (15 Points)

Green Energy Technologies

Advanced green energy technologies with examples from current industry practice and cutting edge research developments. Topics include: renewable energy systems, distributed power generation, energy storage techniques, transportation electrification, power converters for renewable energy integration, soft-switched resonant converters, wireless power transfer, new semiconductor devices, motor drives, and LED lighting.

Prerequisite: ELECTENG 734

ELECTENG 736 (15 Points)

Analog and Digital Filter Synthesis

Filter concepts and network functions, a review of approximation techniques and frequency transformations, leading to a thorough treatment of passive, active and digital filter implementations.

Prerequisite: ELECTENG 303 or 331
Restriction: ELECTENG 416

ELECTENG 738 (15 Points)

Selected Topics in Advanced Power Systems

Electricity markets: structure, pricing, optimisation, ancillary services; Power system protection practices; Distribution Network Development: Smart Grids, Demand Side Participation, Integration of DG/renewable sources and Electric Vehicles. Core concepts are extended by an individual research project, a self-guided protection laboratory and industry engagement in advanced power system practices.

Prerequisite: ELECTENG 731
Restriction: ELECTENG 703

ELECTENG 770 (15 Points)

Capstone Project

Final year team exercise with students in multidisciplinary roles, with focus on electrical and electronic engineering, integrating technical learning into realistic design outcomes. Comprehensive investigation of an open-ended, complex, real or synthetic computer, electrical and software engineering problem with simulated professional design office constraints. Includes technical, economic and environmental impact components to complete a scheme assessment report.

Prerequisite: 75 points from Part III courses listed in the BE(Hons) Schedule for the Electrical and Electronic Engineering specialisation

Engineering General

Part I

ENGGEN 115 (15 Points)

Principles of Engineering Design

An introduction to the principles of design as a fundamental part of engineering practice and a foundation for subsequent design courses. Students are also introduced to essential drawing skills and CAD, and complete group-based design projects. Topics include systems life cycle, design, and introductions to professional issues such as health and safety, ethics, sustainability, cultural diversity, communication, leadership, and teamwork.
ENGGEN 121 (15 Points)
Engineering Mechanics
An introduction to planar mechanics including: free body diagrams, planar equilibrium of rigid bodies, friction, distributed forces, internal forces, shear force and bending moment diagrams, kinematics and kinetics of particles, work and energy, relative motion, kinematics and kinetics of rigid bodies.
Restriction: CIVIL 210, MECHENG 222

ENGGEN 131 (15 Points)
Introduction to Engineering Computation and Software Development
Introduction to problem solving in engineering through the use of the software package MATLAB, and the programming language C.
Restriction: ENGSCI 233, 331

ENGGEN 140 (15 Points)
Energy and Society
How will we power the modern world? An introduction to chemistry and biology and their application to solving problems in energy, its transformation and use. Treatment of associated risks and uncertainties applied to decision making in energy will develop understanding of perspective taking, the social licence to operate, and the role of professional engineering skills in the community and society.

Part II
ENGGEN 204 (15 Points)
Professional Skills and Communication
A system-wide view of the role of the professional engineer in society and business. The skills of advocacy, and individual and group-based communication are put into practice. Scenarios representative of real-world issues are addressed through team-based projects and problem solving. The professional issues introduced in ENGGEN 115 (health and safety, ethics, sustainability, cultural diversity, communication, leadership, and teamwork) are continued and developed.
Prerequisite: ENGGEN 115, 199

Part III
ENGGEN 303 (15 Points)
Managing Projects and Innovation
Introduction to theory and practice of managing projects, innovation, product development and service delivery. Students work in interdisciplinary teams to complete a project based on a complex real-world systems scenario. Project management and innovation topics are integrated with design studies covered in previous courses, and extended to wider business issues of risk and opportunities, entrepreneurship, financial management, and regulatory issues.
Prerequisite: ENGGEN 199, 204

Part IV
ENGGEN 403 (15 Points)
Managing a Business
An introduction to the commercial drivers and business practices which prepare students for successful roles in the commercial, government, and non-profit sectors after graduation. Students are presented with a systems thinking approach to managing large, complex, multidisciplinary challenges. Professional issues (such as health and safety, sustainability, resilience, ethics, leadership, and cultural diversity) from previous courses are expanded.
Prerequisite: BUSINESS 101 and 102, or BUSINESS 111 and 112, or DESIGN 220 or 221 or 222, or ECON 151 and GLOBAL 101, or ENGGEN 303 or LAW 241 or MUS 186 or 365 or PROPERTY 231 or SCIGEN 201

ENGGEN 701 (15 Points)
Professional Project
A comprehensive investigation, analysis and
reporting of a complex engineering design, development or professional engineering problem. Problem synthesis, solution specification, development and reporting as approved by the Head of Department of Mechanical Engineering.
Prerequisite: Departmental approval required
Restriction: ENNGEN 401, 405, 410, 705

ENNGEN 705 (15 Points)
Engineering Product Development
Advanced topics in the engineering design and development of new manufactured products, taking an integrated approach including technical, commercial, and user aspects. Theory is linked to practice through multidisciplinary teams engaging in projects and case studies.
Prerequisite: B grade or higher in ENNGEN 303
Restriction: ENNGEN 404, 405, 410, 701, MGMT 305

Engineering Science

Part I
ENGSIC 111 (15 Points)
Mathematical Modelling 1
Restriction: ENNGSC 211, 213, 311, 313, 314, MATHS 150, 153

Part II
ENGSIC 205 (15 Points)
Special Topic

ENGSIC 211 (15 Points)
Mathematical Modelling 2
Prerequisite: ENNGEN 150, or ENGSIC 111, or a B+ or higher in MATHS 108 or 110 or 150 or 153, or a B+ or higher in MATHS 120 and 130
Restriction: ENGSIC 213

ENGSIC 233 (15 Points)
Computational Techniques and Computer Systems
Introduction to computer architecture and computational techniques. Data representation, memory, hardware, interfacing, and limitations. Numerical computation and algorithms, coding design and paradigms.
Prerequisite: ELECTENG 101 and ENNGEN 131, and ENNGEN 150 or ENGSIC 111
Corequisite: ENGSIC 211 or 213

ENGSIC 255 (15 Points)
Modelling and Analytics in Operations Research
Emphasises the relationship between business and industrial applications and their associated operations research models. Software packages will be used to solve practical problems. Topics such as: linear programming, transportation and assignment models, network algorithms, queues, inventory models, simulation, analytics and visualisation will be considered.
Prerequisite: 15 points at Stage I in Statistics or Mathematics or Engineering
Restriction: STATS 255
ENGSCI 263 (15 Points)
Engineering Science Design I
Introduction to concepts of model design for engineering problems, including model formulation, solution procedures, validation, and shortcomings, with examples from topics in computational mechanics, operations research and data science. Further development of problem-solving skills and group project work. The use of computational models to support design-focused decision making while considering ethical and societal factors.
Prerequisite: ENNGEN 115, and ENNGEN 150 or ENGSCI 111
Corequisite: ENGSCI 211 or 213

Part III
ENGSCI 309 (15 Points)
Image and Digital Signal Processing
Fundamentals of image processing and digital signal processing. One dimensional signals and digital filters. Digital filtering with FIR and IIR filters and the Digital Fourier Transform (DFT). Two-dimensional signals, systems and analysis methods. 2D images, spatial sampling, grey-scale quantification, point operations, spatial operations, high pass filtering, sharpening images, noisy images, nonlinear image processing.
Prerequisite: ENGSCI 211 or 213

ENGSCI 311 (15 Points)
Mathematical Modelling 3
A selection from: ordinary differential equations, systems of equations, analytical and numerical methods, non-linear ODEs, partial differential equations, separation of variables, numerical methods for solving PDEs, models for optimisation, industrial statistics, data analysis, regression, experimental design reliability methods.
Prerequisite: ENGSCI 211
Restriction: ENGSCI 313, 314

ENGSCI 313 (15 Points)
Mathematical Modelling 3ECE
Complex Analysis, including complex numbers, analytic functions, complex integration, Cauchy’s theorem, Laurent series, residue theory; Laplace transforms; Modelling with partial differential equations, including electronic and electrical applications; Fourier Analysis, Fourier transform, Fast Fourier transform; Optimisation, including unconstrained and constrained models, linear programming and nonlinear optimisation.
Prerequisite: ENGSCI 211
Restriction: ENGSCI 311, 314

ENGSCI 314 (15 Points)
Mathematical Modelling 3ES
Mathematical modelling using ordinary and partial differential equations. Topics include: probability, conditional probability, random variables as models of a population, common distribution models, the Poisson process, applications to reliability, exploratory data analysis, confidence intervals, tests of hypothesis, t-tests, sample tests and intervals, paired comparisons. Introduction to one-way ANOVA. Linear and polynomial regression, regression diagnostics.
Prerequisite: ENGSCI 211
Restriction: ENGSCI 311, 313, 321

ENGSCI 331 (15 Points)
Computational Techniques 2
Methods for computing numerical solutions of mathematical models and data analytics problems with focus on translating algorithms to computer code. A selection of topics from numerical solution of linear and non-linear equations, eigen problems, ordinary and partial differential equations, databases, inverse problems and parameter estimation.
Prerequisite: ENGSCI 233
Corequisite: ENGSCI 311 or 313 or 314
ENGSCI 343 (15 Points)
Mathematical and Computational Modelling in Mechanics

Development of macroscopic models of physical systems using fundamental mathematical techniques and physical laws. Topics include vector and tensor calculus including indicial notation and integral theorems, conservation laws, control volumes and constitutive equations, continuum assumptions, isotropy and homogeneity. Possible applications include deformation, strain and stress, fluid flow, electromagnetism, reactive chemical transport, and kinetics.

Prerequisite: BIOMENG 221 or MECHENG 242, and ENGSCI 211 or 213
Restriction: BIOMENG 321

ENGSCI 344 (15 Points)
Modelling and Simulation in Computational Mechanics

Solution of real-world continuum mechanics problems, using computational tools commonly used in engineering practice. This will develop skills in: analysing complexity and selecting an appropriate model representation of the physical problem; choosing the correct computational tool with which to solve the model; designing and executing appropriate numerical experiments using the chosen tool; validating, interpreting and communicating the simulation results.

Prerequisite: BIOMENG 321 or ENGSCI 343
Restriction: ENGSCI 744

ENGSCI 355 (15 Points)
Applied Modelling in Simulation and Optimisation

Use of optimisation modelling languages and simulation software, with an emphasis on practical problem solving and laboratory-based learning.

Prerequisite: ENGSCI 255 or STATS 255
Restriction: OPSRES 385

ENGSCI 363 (15 Points)
Engineering Science Design II

Application of computational engineering methods combined with optimisation techniques to complex engineering design problems. Group-based integrated design, prototype and test projects that include consideration of societal, ethical and professional engineering factors.

Prerequisite: BIOMENG 241 or ENGSCI 263

ENGSCI 391 (15 Points)
Optimisation in Operations Research

Linear programming, the revised simplex method and its computational aspects, duality and the dual simplex method, sensitivity and post-optimal analysis. Network optimisation models and maximum flow algorithms. Transportation, assignment and transhipment models, and the network simplex method. Introduction to integer programming.

Prerequisite: 15 points from ENNGEN 150, ENGSCI 111, MATHS 208, 250, 253, and 15 points from COMPSCI 101, ENNGEN 131, MATHS 162, STATS 220
Restriction: ENGSCI 765

Part IV

ENGSCI 700A (15 Points)
ENGSCI 700B (15 Points)
Research Project

An investigation carried out under the supervision of a member of staff on a topic assigned by the Head of Department of Engineering Science. A written report on the work must be submitted.

To complete this course students must enrol in ENGSCI 700 A and B

ENGSCI 711 (15 Points)
Advanced Mathematical Modelling

A selection of modules on mathematical modelling methods in engineering, including theory of partial methods of characteristics, similarity solutions,
differential equations, integral transforms, asymptotic expressions, theory of waves, special functions, non-linear ordinary differential equations, calculus of variations, tensor analysis, complex variables, wavelet theory and other modules offered from year to year.

Prerequisite: 15 points from ENGSCI 311, 313, 314

ENGSCI 712 (15 Points)
Computational Algorithms for Signal Processing

Advanced topics in mathematical modelling and computational techniques, including topics on singular value decomposition, Principle Component Analysis and Independent Component Analysis, eigen-problems, and signal processing (topics on neural network models such as the multi-layer perceptron and self-organising map).

Prerequisite: 15 points from ENGSCI 311, 313, 314

ENGSCI 740 (15 Points)
Advanced Mechanics in Research and Technology

Applications of continuum mechanics to problems in biomechanics, fluid mechanics and solid mechanics. Including topics such as large deformation elasticity theory applied to soft tissues, inviscid flow theory, compressible flows, viscous flows, meteorology, oceanography, coastal ocean modelling, mixing in rivers and estuaries. Fracture, composite materials and geomechanics.

Prerequisite: BIOMENG 321 or ENGSCI 343

ENGSCI 741 (15 Points)
Waves and Fracture

Advanced topics in mechanics including: waves and wave motion with applications to acoustics, optics, fluid flow problems and shock discontinuities using numerical methods. Fracture: modes of, displacement discontinuity in linear elasticity, stress intensity factor, spectral solution methods, finite friction. Applications include: hydraulic fracturing, earthquakes, macroscale strength of materials.

Prerequisite: BIOMENG 321 or ENGSCI 343

ENGSCI 753 (15 Points)
Computational Techniques in Mechanics and Bioengineering

Theoretical and applied finite element and boundary element methods for static and time dependent problems of heat flow, bioelectricity, linear elasticity and non-linear mechanics.

Prerequisite: ENGGEN 131 or equivalent, and 15 points from ENGSCI 311, 313, 314

ENGSCI 755 (15 Points)
Decision Making in Engineering

Introduction to techniques for decision making in engineering systems including decision heuristics, simple prioritisation, outranking approaches, analytic hierarchy process, application to group decision making.

Prerequisite: Departmental approval

ENGSCI 760 (15 Points)
Algorithms for Optimisation

Meta-heuristics and local search techniques such as Genetic Algorithms, Simulated Annealing, Tabu Search and Ant Colony Optimisation for practical optimisation. Introduction to optimisation under uncertainty, including discrete event simulation, decision analysis, Markov chains and Markov decision processes and dynamic programming.

Prerequisite: COMPSCI 101 or ENGGEN 131

ENGSCI 761 (15 Points)
Integer and Multi-objective Optimisation

Prerequisite: ENGSCI 391 or 765
ENGSCI 762 (15 Points)
Scheduling and Optimisation in Decision Making
A course of advanced topics arising in the practical application of optimisation models for machine and resource scheduling, routing applications, staff rostering and performance measurement.
Prerequisite: ENGSCI 391 or 765

ENGSCI 763 (15 Points)
Advanced Simulation and Stochastic Optimisation
Prerequisite: ENGSCI 391 or 765

ENGSCI 768 (15 Points)
Advanced Operations Research and Analytics
Advanced Operations Research and Analytics topics including selected theory, algorithms and applications for non-linear programming, smooth and non-smooth optimisation, equilibrium programming and game theory.
Prerequisite: ENGSCI 391 or 765

Environmental Engineering
Part II
ENVENG 200 (15 Points)
Fundamentals of Environmental Engineering
Prerequisite: ENGGGEN 140
Restriction: ENVENG 244

ENVENG 244 (15 Points)
Environmental Engineering 1
Water quality, water and wastewater characteristics – physical, chemical and biological treatments (unit operations and processes). Solid waste characteristics and disposal, hazardous waste treatment. Stormwater management.
Restriction: ENVENG 243

Part III
ENVENG 300 (15 Points)
Natural and Built Environment Processes
Prerequisite: ENGGGEN 200
Restriction: ENVENG 341

ENVENG 333 (10 Points)
Engineering Hydrology

ENVENG 341 (15 Points)
Environmental Engineering 2
Examines natural environmental processes and their relevance to engineering. Soil and water
chemistry, equilibrium and organic chemistry, microbiology, biochemistry and biological processes will be examined, focusing on the application of these in engineering design, practice and management.

ENVENG 342 (15 Points)
Environmental Engineering Design
The applications of design practice in environmental engineering with a number of design projects. Elements of water and wastewater engineering. Landfill design and air pollution control.
Restriction: ENVENG 405

Part IV
ENVENG 701 (15 Points)
Urban Stormwater Management
Design and application of stormwater runoff quantity and quality control systems for urban development including: bioretention, living roofs, swales, permeable/porous pavement, detention ponds, and constructed wetlands. An independent project couples technical design, safety, maintenance, construction, hydrologic and water quality modelling, and stakeholder engagement in an application of “Low Impact Design” from the site to the catchment scale.
Prerequisite: ENVENG 244, 333

ENVENG 740 (15 Points)
Water and Wastewater Engineering

ENVENG 746 (15 Points)
Surface Water Quality Modelling
Advanced specialist topics in modelling of lakes and rivers. Specific topics covered include response to different loadings applied to surface water systems, and modelling of organic matter, dissolved oxygen consumption, eutrophication, and toxic substances. The core taught skills are extended by an individual project in which independent research is undertaken to solve a challenging surface water quality engineering problem.
Prerequisite: ENVENG 341, 342

ENVENG 747 (15 Points)
Soil-Contaminant Fate Processes and Modelling
Focuses on modelling sorption, degradation kinetics, and leaching of chemicals in the soil environment. Topics include deriving sorption parameters, parent and metabolite fitting with statistical rigours, calculating degradation end-points, novel adsorbents for removing contaminants in soil and water. The core taught skills are extended by an individual project in which independent research is undertaken to solve an environmental issue.
Prerequisite: ENVENG 341 or equivalent

Mechanical Engineering
Part II
MECHENG 201 (15 Points)
Introduction to Mechatronics
Introduces mechatronics to mechanical and mechatronics engineers. Covers sensors and actuators, analogue and digital circuit elements for signal processing and programming.
Prerequisite: ELECTENG 101, ENNGEN 131

MECHENG 211 (15 Points)
Thermofluids
The fundamentals of fluid mechanics, thermodynamics and heat transfer with practical applications to engineering devices and systems.
MECHENG 222 (15 Points)

Dynamics

Kinematics of particles, rectilinear and curvilinear motion, kinematics of rigid bodies in the plane. Kinetics of particles, systems of particles and rigid bodies. Impulse and momentum, mechanism motion in the plane. Vibration of a particle.
Prerequisite: ENGGEN 121 or 150

MECHENG 235 (15 Points)

Design and Manufacture 1

The engineering design process as a teamwork and problem-solving activity involving analysis, synthesis, evaluation and critical thinking. Design methodology and communicating design intent through written and graphical means. Introduction to selected motive power sources, machine elements for mechanical power systems, and production and fabrication processes.
Prerequisite: ENGGEN 115

MECHENG 236 (15 Points)

Design and Manufacture 2

Machine elements and their use in engineering design, including internal combustion engines, clutches, brakes, and basic hydraulic and pneumatics systems and components. Material-based production processes and fabrication methods. Design reliability and safety. Basic principles of "Design for X".
Prerequisite: MECHENG 235

MECHENG 242 (15 Points)

Mechanics of Materials 1

Prerequisite: MECHENG 270

MECHENG 270 (15 Points)

Software Design

Fundamentals of software design and high-level programming making use of case studies and programming projects. Includes: requirements analysis, specification methods, software architecture, software development environments, software quality, modularity, maintenance, reusability and reliability; models of software development.
Restriction: COMPSYS 202, SOFTENG 281

Part III

MECHENG 311 (15 Points)

Thermal Engineering

Prerequisite: MECHENG 211

MECHENG 312 (15 Points)

Sensors and Actuators

Mechatronics engineering and its elements, including sensors, actuators and computer interfacing. The design of mechatronic systems. Topics include interfacing, signal conditioning and processing, sensors, actuators, control technologies, software, systems modelling, simulation, analysis and design.

MECHENG 313 (15 Points)

Design of Real-Time Software

Introduces the principles of software design in a real-time environment. Main topics include computer/microcontroller architecture, programming in a real-time environment, software design and data acquisition systems.
Prerequisite: MECHENG 270
MECHENG 322 (15 Points)
Control Systems
An introduction to classical control of mechanical and mechatronic systems. Topics include: transfer functions, block diagrams, time response characteristics, stability, frequency response characteristics, and controller design (e.g., pole placement, lead-lag compensation, PID). Applications in MATLAB/Simulink and with physical systems.
Prerequisite: ENGSCI 211, MECHENG 222

MECHENG 325 (15 Points)
Dynamics of Fluids and Structures
3D rigid body dynamics - inertia tensor, Euler’s equations, gyroscopic motion. Vibration of single and two degree of freedom systems. Applications to vibration engineering. Introductory acoustics and spectral analysis. Mass, linear momentum, angular momentum and energy equations. Application to internal and external flows, boundary layers, pumps, turbines and lifting bodies. Experimental and numerical methods, dimensional analysis, similarity, and flow measurement.
Prerequisite: MECHENG 211, 222

MECHENG 334 (15 Points)
Engineering Design 3M
Good practice and standard methods in mechanical engineering design. Conceptual and detailed design in projects involving machine elements, engineering sciences and engineering mechanics. Some of the advanced computer-aided tools (e.g., CAD, CAM, CAE) will be introduced and utilised in some projects.
Prerequisite: MECHENG 235, 236, 242

MECHENG 340 (15 Points)
Mechanics of Materials 2
Complex material behaviour and structural analysis, extending capability from two to three dimensions. States of stress and strain at a point in a general three-dimensional stress system. Generalised stress-strain relations for linearly elastic isotropic materials. Failure theories for ductile and brittle materials, elementary plasticity, and fatigue. Analytical techniques and numerical analysis of complex mechanical elements.
Prerequisite: MECHENG 242

MECHENG 352 (15 Points)
Manufacturing Systems
An introduction to the procedures and technological aspects of a typical manufacturing system; basic concepts and practice of plant and work design, automation, CAD/CAM, planning and simulation; selected IoT technologies; and project-based introduction to the tools and techniques applied by professional engineers in a modern manufacturing setting.
Restriction: MECHENG 351

MECHENG 370 (15 Points)
Electronics and Signal Processing
An introduction to the design, analysis and implementation of electronic circuits or systems for various applications such as signal generation and processing, interfacing, and high power electronics.
Prerequisite: ELECTENG 101 or MECHENG 201

MECHENG 371 (15 Points)
Digital Circuit Design
Fundamental concepts in the design of combinational and sequential logic circuits. Modern approach to design using CAD tools that exploit the advantage of automation. Students will be exposed to the use of FPGA to rapid prototype digital systems using schematic and hardware description language entries.
Prerequisite: ELECTENG 101 or MECHENG 201
Part IV
MECHENG 700A (15 Points)
MECHENG 700B (15 Points)
Research Project
Supervised research on a topic in engineering culminating in an independent written project report that includes a literature review, a description of the research and its findings, and a statement of research contribution. Further supporting technical material will be provided as a compendium.
Prerequisite: 75 points from Part III courses in the BE(Hons) Schedule.
Restriction: MECHENG 407, 408, 461, 462, 762, 763
To complete this course students must enrol in MECHENG 700 A and B

MECHENG 705 (15 Points)
Mechatronics Systems
Fundamentals of digital control and signal processing as applied to mechatronics systems. Modelling and analysis of mechatronics systems that includes transducers and applications. Issues related to mechatronics systems such as thermal management, signal detection, filtering and integrity, etc.
Prerequisite: MECHENG 312, 322

MECHENG 706 (15 Points)
Mechatronics Design
A range of projects that demonstrate the application and integration of engineering knowledge to create practical intelligent devices, machines and systems. AI based control techniques will be introduced.
Prerequisite: MECHENG 312, 322

MECHENG 709 (15 Points)
Industrial Automation
Automation technologies widely used in manufacturing and processing industries. Topics include industrial robotics; programmable logic controllers (PLCs); pneumatics; machine vision systems; automated assembly; design for automation; and Industry 4.0 (such as machine-to-machine communications and data analysis). Students will participate in a number of hands-on labs throughout the course.
Restriction: MECHENG 700

MECHENG 712 (15 Points)
Aerohydrodynamics
The study of fluid mechanics relevant to external flows, eg, wind turbines, yachts, aircraft or wind loadings on buildings, boundary layers, computational fluid dynamics.
Prerequisite: MECHENG 325

MECHENG 713 (15 Points)
Energy Technology
Industrial thermodynamics and energy conversion/efficiency, power cycles, availability and irreversibility, simple combustion analysis, mass transfer, energy studies, boiling and condensation.
Prerequisite: MECHENG 311

MECHENG 715 (15 Points)
Building Services
Principles and practice of heating, ventilation, air-conditioning and refrigeration (HVAC&R), psychrometry, heating/cooling loads, mass transfer and air quality, refrigeration/heat pump systems, cooling towers, pumps, fans, valves, pipes and ducts.
Prerequisite: MECHENG 325

MECHENG 722 (15 Points)
Engineering Vibrations
Selected topics in vibration engineering: Multiple degree of freedom and continuous systems; Spectral analysis; analytical, approximate and numerical methods, including FEA; vibration instrumentation, measurement and testing; modal
MECHENG 724 (15 Points)
Multivariable Control Systems
Advanced control of mechanical and mechatronic systems. Topics include: state-space representations, linearisation, discretisation, stability, state feedback control design, optimal control, state estimation and Kalman filters. Applications in MATLAB/Simulink and with physical systems.
Prerequisite: MECHENG 322
Restriction: ELECTENG 722, MECHENG 720

MECHENG 726 (15 Points)
Acoustics for Engineers
Prerequisite: MECHENG 325

MECHENG 731 (15 Points)
Engineering Design 4M
A variety of engineering projects requiring the development and communication of design solutions to a professional standard, and using a wide range of advanced engineering methods.
Prerequisite: MECHENG 334

MECHENG 735 (15 Points)
MEMS and Microsystems
Introduction to working principles and fabrication of MEMS/microsystems such as microsensors, microactuators, microfluidics, etc. Exposure to engineering design principles including engineering mechanics, fluidics, materials, etc. at microscale. Exposure to microfabrication processes as part of a laboratory component.
Prerequisite: MECHENG 325
Restriction: MECHENG 728

MECHENG 736 (15 Points)
Biomechatronic Systems
Mechatronic principles and techniques for measuring, assisting, augmenting and mimicking biological systems. Topics include: brain machine interfaces, sensors and actuators, biomechanics and motion control, wearable and assistive devices, bioinstrumentation, soft robotic technologies, human factors, safety/ethical aspects, and biomechatronic design principles. Significant hands-on experience through the design, modelling and development of paradigmatic biomechatronic systems.
Prerequisite: MECHENG 312
Restriction: MECHENG 730

MECHENG 743 (15 Points)
Composite Materials
Prerequisite: MECHENG 340

MECHENG 747 (15 Points)
Manufacturing and Industrial Processes
Theory of plasticity; material characterisation; process analyses; extrusion, wire-drawing, forging, rolling; metal cutting; thin shear model and Merchant’s diagram, tool wear and tool life; sheet forming; forming limit diagram; thermal analyses of industrial operations including polymer
processing; basic polymer science: thermosets and thermoplastics, profile extrusion, sheet extrusion; blown-film extrusion, filament extrusion, blow moulding.

Prerequisite: MECHENG 340

MECHENG 752 (15 Points)
Technology Management
An appreciation of the strategic systems and technology management aspects of manufacturing systems. Industry based projects that explore the design and optimisation of manufacturing operations form a major part of the course.

Prerequisite: Grade of B or higher in ENNGEN 303

Software engineering

Part II

SOFTENG 206 (15 Points)
Software Engineering Design 1
Project work. Skills and tools in systematic development of software, including testing, version control, build systems, working with others.

Prerequisite: SOFTENG 251 or 281

SOFTENG 211 (15 Points)
Software Engineering Theory

Prerequisite: ENNGEN 131 or COMPSCI 101

SOFTENG 250 (15 Points)
Introduction to Data Structures and Algorithms
Introduction to the analytical and empirical behaviour of basic algorithms and data structures.

Prerequisite: ENNGEN 131 or COMPSCI 101

Corequisite: ENGSCI 211

SOFTENG 251 (15 Points)
Object Oriented Software Construction
An introduction to Object Oriented software development. Programming with classes; objects and polymorphism. Evolutionary and test-driven development. Analysis and design. Modelling with UML. Design patterns. Design for reuse, for testing, and for ease of change.

Prerequisite: ENNGEN 131 or COMPSCI 101

SOFTENG 254 (15 Points)
Quality Assurance
Software verification and validation. Static and dynamic QA activities as part of the software lifecycle. Unit, integration, system, and usability testing. Use of visual notations, automation, and tools to support development activities. Metrics to quantify strength of testing and complexity of programs.

Prerequisite: SOFTENG 250, 251

SOFTENG 281 (15 Points)
Object-Oriented Programming
Computer programming using objects as the mechanism for modularity, abstraction, and code reuse. Review of control structures for conditionals and iteration. Instance variables, methods, and encapsulation. Interfaces, inheritance, polymorphism, and abstract classes. Exception handling. Introduction to basic data structures and basic algorithms including sorting and searching.

Prerequisite: COMPSCI 101 or ENNGEN 131

Restriction: COMPSYS 202, MECHENG 270, SOFTENG 250, 251

SOFTENG 282 (15 Points)
Software Engineering Theory
Theoretical foundations of software engineering, including sets, formal languages, operations on languages, deterministic and nondeterministic
automata, designing automata, determinisation, regular expressions, logic, induction, recursion, program correctness, computability, counting, elements of graph algorithms

Prerequisite: COMPSCI 101 or ENGGEN 131
Restriction: SOFTENG 211

SOFTENG 283 (15 Points)
Software Quality Assurance
Software verification and validation. Static and dynamic quality assurance activities as part of the software lifecycle. Unit, integration, system, and usability testing. Metrics to quantify strength of testing and complexity of programs. Techniques for engineering of software systems including requirements, specification, validation, verification. Modelling paradigms including information, behaviour, domain, function and constraint models. Specification languages.

Prerequisite: COMPSYS 202 or SOFTENG 251 or 281
Restriction: SOFTENG 254

SOFTENG 284 (15 Points)
Data Structures and Algorithms
Data structures including linked-lists, stacks, queues, trees, hash tables; graph representations and algorithms, including minimum spanning trees, traversals, shortest paths; introduction to algorithmic design strategies; correctness and performance analysis.

Prerequisite: COMPSYS 202 or SOFTENG 251 or 281
Restriction: SOFTENG 250

Part III
SOFTENG 306 (15 Points)
Software Engineering Design 2
Working in project teams to develop software to meet changing requirements for a large application. Project Planning. Requirements gathering. Estimating, costing and tracking. Acceptance and unit testing. Evolutionary design and development. Collaborative development tools.

Prerequisite: SOFTENG 206, and 254 or 283, and 350

SOFTENG 310 (15 Points)
Software Evolution and Maintenance
Design and maintenance of multi-version software, debugging techniques, design and documentation for software re-use, programme migration and transformation, refactoring, tools for software evolution and maintenance.

Prerequisite: SOFTENG 254 or 283

SOFTENG 325 (15 Points)
Software Architecture
Taxonomy of software architecture patterns, including client/server and multi-tier. Understanding quality attributes. Methodologies for design of software architectures. Technologies for architecture level development, including middleware.

Prerequisite: COMPSYS 302 or SOFTENG 254 or 283

SOFTENG 350 (15 Points)
Human Computer Interaction
Human behaviour and humans’ expectations of computers. Computer interfaces and the interaction between humans and computers. The significance of the user interface, interface design and user centred design process in software development. Interface usability evaluation methodologies and practice. Includes an evaluation project, group design project, and implementation using current techniques and tools.

Prerequisite: SOFTENG 206
Restriction: COMPSCI 345, 370

SOFTENG 351 (15 Points)
Fundamentals of Database Systems
Relational model, Relational algebra, Relational calculus, SQL, SQL and programming languages, Entity-Relationship model, Normalisation, Query
processing, Query optimisation, Distributed databases, Transaction management, Concurrency control, Database recovery.

Prerequisite: SOFTENG 251 or 281

SOFTENG 700 A and B

Part IV

SOFTENG 700A (15 Points)

SOFTENG 700B (15 Points)

Research Project

Students are required to submit a report on project work carried out on a Software Engineering topic assigned by the Head of Department.

Prerequisite: SOFTENG 306

To complete this course students must enrol in **SOFTENG 700 A and B**

SOFTENG 701 (15 Points)

Advanced Software Engineering Development Methods

Advanced studies in methods and techniques for developing complex software systems including topics in software engineering environments, advanced software design, tool construction and software architectures. The core taught skills are extended by individual projects in which independent research is undertaken to address challenging software system problems.

Prerequisite: COMPSYS 302 or SOFTENG 306

SOFTENG 702 (15 Points)

Advanced Human Computer Interaction

Advanced topics in human computer interaction and human aspects of computer systems relevant to commercial solution development and computer science research. Sample topics: advanced evaluation methods; support of pen and touch-based interaction; trends with domain specific user interface design, such as interfaces for enterprise systems.

Prerequisite: COMPSCI 345 or SOFTENG 350

Restriction: COMPSCI 705

SOFTENG 750 (15 Points)

Software Development Methodologies

Software lifecycle; software process models; examples of software processes; software process improvement; project management; tool support for software development; issues in software engineering.

Prerequisite: SOFTENG 306

Restriction: COMPSCI 732

SOFTENG 751 (15 Points)

High Performance Computing

Advanced parallel and high performance
computing concepts and techniques such as parallel system architecture; parallelisation concepts, algorithms and methodology; parallel programming paradigms and technologies. Core concepts and skills are deepened by a hands-on research project in which a challenging parallel computing problem is analysed and solved.

Prerequisite: COMPSYS 302 or SOFTENG 306

SOFTENG 752 (15 Points)
Formal Specification and Design
Formal specification, design, and (automatic) analysis of software systems. Quality assurance through precise description and rigorous verification on the design. Introduction to the Z, OCL, and CSP notations. Comparison of approaches, emphasising on their practical application.

Prerequisite: SOFTENG 306

SOFTENG 753 (15 Points)
Bayesian Machine Learning
Examines classic and state of the art algorithms in the field of machine learning. Topics will include: Bayesian classification, regression and state estimation; clustering and mixture models; kernel-based methods; sequential models; graphical models; neural networks and deep architectures.

Prerequisite: ENGSCI 211 or 213, and SOFTENG 251 or 281

SOFTENG 754 (15 Points)
Advanced Software Requirements Engineering
(previously Software Requirements Engineering)
Advanced software engineering concepts focusing on techniques for requirements analysis and requirements engineering (RE) of software systems. Topics will include: requirements elicitation, analysis, specification, validation, verification, user experience design, test-driven development, and continuous integration.

Prerequisite: COMPSYS 302 or SOFTENG 251 or 281

SOFTENG 761 (15 Points)
Advanced Agile and Lean Software Development
(previously Agile and Lean Software Development)
Advanced software engineering concepts focussing on Agile and Lean software development; including hands-on iterative and incremental software development, self-organising teamwork, project management, and an individual research component to explore challenging issues in this discipline.

Prerequisite: SOFTENG 306 or equivalent

SOFTENG 762 (15 Points)
Robotics Process Automation
Covers the fundamentals of Robotic Process Automation (RPA) systems. Students explore what RPA is and where it is useful, how RPA fits into current information technology setups, extracting and manipulating data from both external and internal sources, generating reports and statistics, and orchestrating multi-robot installations.

Prerequisite: SOFTENG 306

SOFTENG 770 (15 Points)
Capstone Project
Final year team exercise with students in multidisciplinary roles, with focus on software engineering, integrating technical learning into realistic design outcomes. Comprehensive investigation of an open ended, complex, real or synthetic computer, electrical and software engineering problem with simulated professional design office constraints. Includes technical, economic and environmental impact components to complete a scheme assessment report.

Prerequisite: 75 points from Part III courses listed in the BE(Hons) Schedule for the Software Engineering specialisation
Structural engineering

Part II

STRCTENG 200 (15 Points)
Introductory Structural Mechanics
Introduction to structural analysis for civil engineers. Equilibrium, internal actions and deformations, structural forms, structural systems, analysis of determinate systems, plane section properties, elasticity, engineering beam theory, failure theories. Prepares students to embark on further studies in structural design.
Prerequisite: ENGGEN 121
Restriction: CIVIL 210

STRCTENG 201 (15 Points)
Civil Engineering Materials and Design
Properties and manufacturing of civil engineering material including concrete, steel, timber structural products and roading material. Design principles and examples for concrete, steel and timber members.
Restriction: CIVIL 250

Part III

STRCTENG 300 (15 Points)
Design Loads and Dynamic Response of Structures
Determination of design loads according to AS/NZS1170 and the response of structures under dynamic loadings.
Prerequisite: CIVIL 210 or STRCTENG 200
Restriction: CIVIL 314

STRCTENG 301 (15 Points)
Timber Structures Design
Structural analytical techniques including computer based approaches to simple indeterminate structures. Design procedures for members and structural systems of timber and engineered wood products. Design project.

STRCTENG 302 (15 Points)
Steel Structures Design
Mechanical properties of steel and contextualizes the application of steel and steel/concrete into buildings and bridges. Comprehensive introduction to design of structural steel members and connections and their use in structures. Application to vertical load carrying systems and steel building behaviour in earthquake and fire.
Prerequisite: CIVIL 210 or STRCTENG 200
Restriction: CIVIL 313

STRCTENG 303 (15 Points)
Concrete Structures Design
Design of reinforced concrete members including beams, columns, walls, foundations. Introduction to prestressed and precast concrete design and applications. Use of the NZ Concrete Structures Standard, NZS 3101.
Prerequisite: CIVIL 210 or STRCTENG 200
Restriction: CIVIL 313

STRCTENG 304 (15 Points)
Structural Design for Civil Engineers
Structural loading for gravity and wind in accordance with the loading code AS/NZS1170. Design principles and examples for concrete and timber members and design for timber framed buildings using NZS3604. Introduction to seismic building behaviour at a conceptual level.
Prerequisite: CIVIL 210 or STRCTENG 200
Restriction: CIVIL 312, 313

Part IV

STRCTENG 710 (15 Points)
Low Rise Structures Design
Structural systems for low-rise buildings, including
seismic design and analysis techniques. Design and detailing of low-rise structures in structural steel, reinforced concrete, reinforced masonry, and timber. Strut and tie design for reinforced concrete. Introduction to fire engineering. Techniques in the checking of existing structures and lessons learnt from failures.

Prerequisite: STRCTENG 302, and CIVIL 313 or STRCTENG 303
Restriction: CIVIL 713

STRCTENG 711 (15 Points)

Multistorey Structures Design

Techniques for the design of multistorey structures to resist seismic loading. Derivation of design actions, alternative structural systems for resisting these loads, design of structural components subject to cyclic inelastic action, detailing of members and joints to enhance earthquake resistance. Techniques of seismic isolation.

Prerequisite: STRCTENG 302, and CIVIL 313 or STRCTENG 303
Restriction: CIVIL 714
APPENDIX - 2019 Calendar Regulations

Students enrolled in the BE(Hons) prior to 2020 will complete their degree under the 2019 Calendar Regulations. Visit https://cdn.auckland.ac.nz/assets/calendar/docs/2019-CalendarBook1.pdf for more details.

Civil Engineering

Part II 120 points

<table>
<thead>
<tr>
<th>Semester One</th>
<th>Semester Two</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVIL 201</td>
<td>CIVIL 211</td>
</tr>
<tr>
<td>CIVIL 210</td>
<td>CIVIL 221</td>
</tr>
<tr>
<td>CIVIL 220</td>
<td>CIVIL 250</td>
</tr>
<tr>
<td>CIVIL 230</td>
<td>ENGGEN 204</td>
</tr>
<tr>
<td>ENGGSCI 211</td>
<td>ENVENG 244</td>
</tr>
</tbody>
</table>

Part III 120 points

<table>
<thead>
<tr>
<th>Semester One</th>
<th>Semester Two</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVIL 322</td>
<td>CIVIL 361</td>
</tr>
<tr>
<td>CIVIL 331</td>
<td>ENGSCI 311</td>
</tr>
<tr>
<td>CIVIL 360</td>
<td>ENVENG 333</td>
</tr>
<tr>
<td>ENGGEN 303</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part IV 120 points

<table>
<thead>
<tr>
<th>Semester One</th>
<th>Semester Two</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVIL 705A</td>
<td>CIVIL 705B</td>
</tr>
<tr>
<td>CIVIL'790</td>
<td>ENGGEN 403</td>
</tr>
<tr>
<td>Elective</td>
<td>CIVIL 756</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part III Elective A Options:

- Semester Two
 - CIVIL 312
 - ENVENG 341

Part III Elective B Options:

- Semester Two
 - CIVIL 314
 - CIVIL 324
 - CIVIL 332

Part IV Elective A Options:

- Semester Two
 - CIVIL 713
 - CIVIL 715
 - CIVIL 718
 - CIVIL 719
 - CIVIL 721
 - CIVIL 722
 - CIVIL 731
 - CIVIL 733
 - CIVIL 758
 - CIVIL 791
 - ENVENG 740
 - ENVENG 746
 - ENVENG 747

Part IV Elective B Options:

- Semester Two
 - CIVIL 710
 - ENGGEN 701

This schedule is designed as a reference for students who have entered the BE(Hons) programme prior to 2020. Please use this appendix in conjunction with course planning information which can be found at https://uoa.custhelp.com/app/answers/detail/a_id/16182/kw/engineering%20software/p/212

Please note:

- Students are also required to complete ENGGEN 299 Workshop Practice in Part II and ENGGEN 499 Practical Work before and during Part IV.
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook.
Computer Systems Engineering

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>COMPSYS 201</td>
<td>COMPSYS 202</td>
</tr>
<tr>
<td>ELECTENG 202</td>
<td>ELECTENG 204</td>
</tr>
<tr>
<td>ELECTENG 210</td>
<td>ELECTENG 209</td>
</tr>
<tr>
<td>ENGSCI 211</td>
<td>ENGGEN 204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>COMPSYS 302</td>
<td>COMPSYS 301</td>
</tr>
<tr>
<td>COMPSYS 305</td>
<td>ELECTENG 303</td>
</tr>
<tr>
<td>ENGGGEN 303</td>
<td>Elective</td>
</tr>
<tr>
<td>ENGGSCI 313</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>COMPSYS 700A</td>
<td>COMPSYS 700B</td>
</tr>
<tr>
<td>Elective</td>
<td>ENGGGEN 403</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part III Elective Options:
- Semester Two
 - COMPSYS 303
 - COMPSYS 304
 - SOFTENG 325

Part IV Elective A Options:
- Semester One
 - COMPSYS 701
 - COMPSYS 723
 - COMPSYS 726
 - COMPSYS 722
 - COMPSYS 726
 - ELECTENG 704
 - ELECTENG 706
 - ELECTENG 722
 - ELECTENG 732
 - ELECTENG 733
 - ELECTENG 734
 - SOFTENG 701
 - SOFTENG 751

- Semester Two
 - Elective

Part IV Elective B Options:
- Semester Two
 - ENGGGEN 701

Please note:
- Students are also required to complete ENGGGEN 299 Workshop Practice in Part II and ENGGGEN 499 Practical Work before and during Part IV.
- All courses in table above are 15 points in value.
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook.
Electrical and Electronic Engineering

<table>
<thead>
<tr>
<th>Part II</th>
<th>120 points</th>
<th>Part III</th>
<th>120 points</th>
<th>Part IV</th>
<th>120 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
<td>Semester One</td>
<td>Semester Two</td>
</tr>
<tr>
<td>COMPSYS 201</td>
<td>COMPSYS 202</td>
<td>ELECTENG 310</td>
<td>ELECTENG 303</td>
<td>ELECTENG 700A</td>
<td>ELECTENG 700B</td>
</tr>
<tr>
<td>ELECTENG 202</td>
<td>ELECTENG 204</td>
<td>ENNGEN 303</td>
<td>ELECTENG 305</td>
<td>Elective</td>
<td>ENNGEN 403</td>
</tr>
<tr>
<td>ELECTENG 210</td>
<td>ELECTENG 209</td>
<td>ENNGSCI 313</td>
<td>ELECTENG 311</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>ENNGSCI 211</td>
<td>ENNGEN 204</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part III Elective Options:

- Semester Two
 - COMPSYS 302
 - COMPSYS 305
 - ELECTENG 307

Part IV Elective A Options:

- Semester One
 - COMPSYS 723
 - COMPSYS 726
 - ELECTENG 721
 - ELECTENG 722
 - ELECTENG 731
 - ELECTENG 732
 - ELECTENG 733

- Semester Two
 - COMPSYS 704
 - COMPSYS 725
 - ELECTENG 703
 - ELECTENG 704
 - ELECTENG 706
 - ELECTENG 726
 - ELECTENG 735

Part IV Elective B Options:

- Semester One
 - COMPSYS 702
 - ELECTENG 309
 - SOFTENG 325

- Semester Two
 - ENGGEN 701

Or other approved course

This schedule is designed as a reference for students who have entered the BEHONS programme prior to 2020. Please use this appendix in conjunction with course planning information which can be found at https://uoa.custhelp.com/app/answers/detail/a_id/16182/kw/engineering%20software/p/212

Please note:
- Students are also required to complete ENNGEN 299 Workshop Practice in Part II and ENNGEN 499 Practical Work before and during Part IV
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook
Software Engineering

<table>
<thead>
<tr>
<th>Part</th>
<th>One</th>
<th>Two</th>
<th>One</th>
<th>Two</th>
<th>One</th>
<th>Two</th>
<th>One</th>
<th>Two</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>COMPSYS 201</td>
<td>ENNGEN 204</td>
<td>ENNGEN 303</td>
<td>SOFTENG 306</td>
<td>SOFTENG 700A</td>
<td>SOFTENG 700B</td>
<td>SOFTENG 700A</td>
<td>SOFTENG 700B</td>
</tr>
<tr>
<td>ENGSCI 211</td>
<td>SOFTENG 206</td>
<td>SOFTENG 350</td>
<td>SOFTENG 325</td>
<td>Elective</td>
<td>ENNGEN 403</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>SOFTENG 250</td>
<td>SOFTENG 211</td>
<td>SOFTENG 351</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>SOFTENG 251</td>
<td>SOFTENG 254</td>
<td>SOFTENG 370</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Part III Elective Options:

- Semester Two
 - COMPSCI 373
 - COMPSCI 367
 - COMPSCI 364
 - COMPSYS 305

- Or other approved course

Part IV Elective Options:

- Semester Two
 - COMPSCI 732
 - COMPSCI 726
 - ENNGEN 760
 - SOFTENG 701
 - SOFTENG 750
 - SOFTENG 751
 - SOFTENG 754

- Or an approved 700 level course

This schedule is designed as a reference for students who have entered the BEHONS programme prior to 2020. Please use this appendix in conjunction with course planning information which can be found at https://uoa.custhelp.com/app/answers/detail/a_id/16182/kw/engineering%20software/p/212

Please note:

- Students are also required to complete ENNGEN 299 Workshop Practice in Part II and ENNGEN 499 Practical Work before and during Part IV
- All courses in table above are 15 points in value
- For further information on elective courses or for detailed information on all courses, visit https://courses.foe.auckland.ac.nz/course, or see the back of this handbook.
Find out more

Need help and advice?
Visit or get in contact with us at the Engineering Student’s Centre:

Faculty of Engineering Building
Level 4, 20 Symonds Street
Open: Monday to Friday 8.30am-4.30pm (except public holidays)
Email: foe-enquiries@auckland.ac.nz
Phone: 0800 61 62 63
+64 9 923 1969 (overseas)
www.engineering.auckland.ac.nz

Find answers to your questions at
www.askauckland.ac.nz

Find more information about undergraduate study in the Faculty of Engineering at:

Resources for students

The Faculty of Engineering
www.engineering.auckland.ac.nz

Canvas
https://canvas.auckland.ac.nz

Current students

How to enrol in courses
www.auckland.ac.nz/enrolment

IT Help
www.engineering.auckland.ac.nz/engineering-IT

Key dates
www.auckland.ac.nz/dates

MyAucklandUni
www.myaucklanduni.ac.nz

Student Services Online
www.student.auckland.ac.nz

Support for Engineering students
foe-engagement@auckland.ac.nz

Unleash space
www.unleashspace.ac.nz
Useful web addresses

Auckland University Student’s Association
www.ausa.org.nz

Career Development and Employment Services
www.cdes.auckland.ac.nz

Clubs, societies and associations

Entry requirements
www.auckland.ac.nz/entry-requirements

Exams
www.auckland.ac.nz/exams

Finances, scholarships and fees
www.auckland.ac.nz/fees
www.auckland.ac.nz/scholarships

How to apply for admission
www.auckland.ac.nz/apply

International Office
Phone: +64 9 373 7513
Email: int-questions@auckland.ac.nz

International students
www.international.auckland.ac.nz

IT essentials
www.auckland.ac.nz/it-essentials

Libraries and Learning Services
www.library.auckland.ac.nz

Maori and Pacific students

Overseas exchanges
www.auckland.ac.nz/360

Security
Phone: 373 7599 ext 85000
(or ext 85000 directly from a University telephone)

Student life
www.auckland.ac.nz/en/on-campus.html

Studylink
www.studylink.govt.nz

Support services
www.auckland.ac.nz/studentsupport

The University of Auckland
www.auckland.ac.nz

The University of Auckland Calendar
www.calendar.auckland.ac.nz

No1
New Zealand university*

No1
Global Reputation**

No1
in New Zealand for Employability***