Data-driven evaluation of policy initiatives

Dr Michael O’Sullivan
Department of Engineering Science
Outline

• Who am I?
• Faster Cancer Treatment
• Non-Acute Rehabilitation & ACC
• Government Initiatives & IDI
• Final Thoughts
Who am I?

- Dr Michael O’Sullivan
- Senior Lecturer in the Department of Engineering Science

University of Auckland alumni
- BSc (1st Class Hons) in Maths & CS
- MPhil (Dist) in Operations Research (OR)

Stanford University alumni
- MS (Eng Eco Systems & OR)
- PhD (Man Sci and Eng)

Faster Cancer Treatment

- Government target of 90% of priority 1 patients have less than 62 days from referral until first treatment
- Processes are complex
- No single person has overview of entire process
- How can we leverage data to evaluate policy changes?
Process Map
Simplified Process Map
Steps in Breast Cancer Pathway
Where to Improve?

Ind 1 ≤ 62 days
Ind 2 ≤ 14 days
Ind 3 ≤ 31 days
Where to Improve?

Ind 2 ≤ 14 days

Ind 1 ≤ 62 days

Ind 4 ≤ 21 days

Ind 3 ≤ 31 days
Where to Improve?

• Anecdotally, Ind2 is the problem
 – “If they get to their FSA on time, everything runs smoothly”
 – Often > 14 days, need more resourcing
 • Triage/Grading, Imaging, etc
Actual Pathways (Day 0 = 1 July 2013)
Simulation of Breast Stream

<table>
<thead>
<tr>
<th>Simulation Model</th>
<th>Targets Enforced</th>
<th>Lower Bound</th>
<th>Point Estimate</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dur</td>
<td>Prop</td>
<td>Dur</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>64.66</td>
<td>0.77</td>
<td>74.2</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>56</td>
<td>0.8</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>49.67</td>
<td>0.77</td>
<td>62.3</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>56.8</td>
<td>0.8</td>
<td>67.2</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>47.47</td>
<td>0.84</td>
<td>57.3</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>45.4</td>
<td>0.86</td>
<td>56.1</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>48.06</td>
<td>0.86</td>
<td>58.2</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>43.47</td>
<td>0.93</td>
<td>51</td>
</tr>
</tbody>
</table>

Ind2 "fixed"
Simulation of Breast Stream

Simulation Model

<table>
<thead>
<tr>
<th>Simulation Model</th>
<th>Targets Enforced</th>
<th>Lower Bound</th>
<th>Point Estimate</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 Day</td>
<td>31 Day</td>
<td>21 Day</td>
<td>Dur</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>64.66</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>49.67</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>56.8</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>47.47</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>45.4</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>48.06</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>43.47</td>
</tr>
</tbody>
</table>

Graphs

1. **Path Duration - 31 Day DTT-Treat**
2. **Path Duration - 21,31 Day FSA-DTT-Treat**

Notes:
- The graphs show the path duration for different simulation models.
- The targets enforced include 14 Day, 31 Day, and 21 Day, with values indicating whether Yes or No.
- The lower and upper bounds for duration (Dur) and proportion (Prop) are provided.
Outcome of Evaluation

• Don’t just focus on Ind2 (Referral to FSA)
• In parallel to this work, WDHB suggested 38 days Referral to DTT target
 – We suggested Ind2 (14 days Referral to FSA) & Ind4 (21 days FSA to DTT), i.e., 35 days Referral to DTT
• WDHB improved entire Breast Cancer Process pathway
Actual Pathways (Day 0 = 1 July 2014)
Simulation of New Breast Stream

Pathway Duration

Day

Non-Acute Rehabilitation & ACC

- ACC funds Public Health Acute Services (PHAS) and Non-Acute Rehabilitation (NAR) stays in hospital
- PHAS is bulk-funded, i.e., fixed amount per patient with extra funding on negotiation
- NAR is funded on a per diem basis
New Funding Policy

• ACC wants to move to a case-mix system for NAR
 – Simpler to administer for ACC and DHBs
• How can we leverage data to evaluate the amount to fund?
• National Minimum Data Set for PHAS and NAR
• ACC data for Community Services
• InterRAI (contextual) and AROC (functional) for more info
Patient Pathway

Total = 12468, Total Valid = 9742, Total Invalid = 2726

Accident

175

5293

4081

193

PHAS stay

PHAS Total = 9374

NAR stay

NAR Total = 9742

Community Services

Community Total = 5468

End of Treatment
Length of Stay (LoS)

A = Accident
P = PHAS
N = NAR in-patient
C = NAR Community services
Hospital (APN) LoS by DHB
Cost of Pathway by DHB
InterRAI and AROC

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>aloneV1</td>
<td>Living alone</td>
<td>interRAI Contact - B3</td>
</tr>
<tr>
<td>carerStressV</td>
<td>Carer stress</td>
<td>interRAI Contact – D20a</td>
</tr>
<tr>
<td>bathV</td>
<td>Self Care Item - bathing</td>
<td>FIM</td>
</tr>
<tr>
<td>medV</td>
<td>Managing medication</td>
<td>interRAI Contact - D4c</td>
</tr>
<tr>
<td>mentImpV</td>
<td>Cognitive Function - problem solving or memory</td>
<td>FIM</td>
</tr>
<tr>
<td>resV*</td>
<td>Domicile</td>
<td>interRAI Contact</td>
</tr>
<tr>
<td>AdmToile</td>
<td>Self-care items Toileting</td>
<td>FIM</td>
</tr>
<tr>
<td>AdmBladd</td>
<td>Sphincter control bladder</td>
<td>FIM</td>
</tr>
<tr>
<td>AdmBowel</td>
<td>Sphincter control bowel</td>
<td>FIM</td>
</tr>
<tr>
<td>AdmXfrTo</td>
<td>Mobility items, transferring to toilet</td>
<td>FIM</td>
</tr>
<tr>
<td>AdmProb</td>
<td>Cognitive function, problem solving</td>
<td>FIM</td>
</tr>
</tbody>
</table>

Note. * Not significant, included for completeness
NAR Cost Adjustments

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|-----------|
| (Intercept) | 16358.7 | 1683.2 | 9.719 | < 2e-16 *** |
| resV | -1069.1 | 1437.2 | -0.744 | 0.457545 |
| mentImpV | -982.8 | 262.1 | -3.75 | 0.000214 *** |
| aloneV1 | 719.3 | 886.6 | 0.811 | 0.417838 |
| carerStressV | 1119.9 | 1035.1 | 1.082 | 0.280222 |
| bathV | -3189.5 | 1750.5 | -1.822 | 0.069489 . |
| medV | 2190.1 | 953.7 | 2.297 | 0.022368 * |
| **Multiple R-squared** | 0.1293 | | | |
| **Adjusted R-squared** | | | | 0.1111 |
Outcome of Evaluation

• ACC can align funding and clinical pathways within NAR with a straightforward assessment
 – Ascertain any adjustors
 – Provide appropriate, individualised funding
Government Initiatives & IDI

• Government initiatives will have cross-sector benefits
 – e.g., being in work has recognised health benefits
• How can we leverage data to evaluate the impact of an initiative?
Context and Outcomes

• “Stitch” an individual’s contextual and outcome data together
 – E.g., age, employment status, days in contact with police
• Explore differences in outcomes that relate to different contextual data
 – E.g., people working < 15 hours per week have more days in hospital, but cost ACC less
Evaluate an Initiative

• Changes an individual’s context
• E.g., training programme
 – Realises a 50% increase in employment hours
 – Transforms someone working 12 hrs per week into someone working 18 hrs per week
 – Consequent change in days in hospital and increase in ACC cost
• Results in changes to individual’s outcomes = value of initiative
Understanding Value

Gather target cohort
Partition by context
Measure counts and outcomes for each partition

People in part-time work (< 30 hrs per week)

0-5 hrs (per week)
- 1,000 people, average 4 days per year in hospital

10-15 hrs
- 5,000 people, average 3.75 days per year in hospital

25-30 hrs

orUa
Evaluating Initiative

Estimate changes due to initiative

0-5 hrs (per week) 0-5 hrs (per week) 700 people, average 4 days per year in hospital

10-15 hrs 10-15 hrs 5,300 people, average 3.75 days per year in hospital

25-30 hrs 25-30 hrs

Value of initiative is $300 \times 0.25 \text{ days} = 75 \text{ hospital days per year}
\approx $1,854 \times 75 = $139,050 \text{ per year}

* Average across 2014 patient costing available from 11 DHBs, adjusted to 2016
Cross Sector Investment

• Initiative run by one sector,
 – E.g., Ministry of Social Development for training programme

• Benefits to other sectors
 – E.g., Ministry of Health, hospital bed days

• Share the cost of the initiative = Data-Driven Cross-Sector Investment
Integrated Data Infrastructure

- IDI (Stats NZ) holds many linked datasets

Gather target cohort
Partition by context
Measure counts and outcomes for each partition

All happens in IDI!

People in part-time work (< 30 hrs per week)

0-5 hrs (per week) | 1,000 people, average 4 days per year in hospital
10-15 hrs | 5,000 people, average 3.75 days per year in hospital
25-30 hrs
IDI “Gotchas”

• Timeframe
 – 3 days to get data out for your research team
 • Random rounding (to base 3) for anonymisation
 – 10 days to get reports screened

• SQL vs SAS
 – SQL good to get data, not great for manipulation
 – SAS great for manipulation, beware of macros!
 • Validation! Unit testing?!
 – Read-only access, tricky to dynamically filter data “pulls”
 • Loop over list of SNZ IDs and pull from, e.g., NMDS, in “bunches”
Final Thoughts

• The data is there! = IDI, DHBs, ACC, etc
• We can (and should) use it to inform policy
• Tools of the trade
 – R (Statistics)
 – Python (Scripting, Programming)
 – SQL (Scripting)
 – SAS (Statistics, Scripting, approx. Programming)
Thanks!!!