Adjusting for linkage bias in the New Zealand Longitudinal Census

COMPASS Colloquium
July 2014

Barry Milne
COMPASS Research Centre
University of Auckland
New Zealand

www.compass.auckland.ac.nz

DISCLAIMER: Access to the data used in this study was provided by Statistics New Zealand under conditions designed to give effect to the security and confidentiality provisions of the Statistics Act 1975. The results presented in this study are the work of the author, not Statistics New Zealand.
Outline

- New Zealand Longitudinal Census (NZLC)
 - Background
 - What is it?
 - How is it being used?
 - Life-course predictors of mortality inequalities
- Linkage Bias
 - What is it?
 - Why is it an issue with the NZLC?
 - Can we adjust for it?
- Conclusions
NZLC - Background

- Census covers whole population, but is cross-sectional snapshot in time
- Greater understanding of time trends and social processes if Census had longitudinal component
 - What is the extent of ethnic mobility and what factors explain changing ethnic identification?
 - Is geographical mobility increasing in NZ
 - What are the long term consequences of poverty?
- Possible if could link records across Censuses
 - Other countries (UK, Australia) have linked Censuses

- ‘Backwards’: t,t-1 (e.g., 2006->2001)
- Theoretical population: those >=5yo who have lived in the country for at least 5 years (82-88% of total popn)
- Largely deterministic, based on sex, dob, area of residence 5y ago, (country of birth, Māori descent)
- 70-76% linkage (approx 3% probabilistic) between adjacent Censuses
- 15 cohorts altogether
 - Joining links of adjacent Censuses
NZLC - What is it?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>06-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,311,000</td>
<td></td>
<td>70.3</td>
</tr>
<tr>
<td>2</td>
<td>01-96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,171,000</td>
<td></td>
<td>69.5</td>
</tr>
<tr>
<td>2</td>
<td>96-91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,174,000</td>
<td></td>
<td>72.0</td>
</tr>
<tr>
<td>2</td>
<td>91-86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,220,000</td>
<td></td>
<td>75.9</td>
</tr>
<tr>
<td>2</td>
<td>86-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,078,000</td>
<td></td>
<td>72.1</td>
</tr>
<tr>
<td>3</td>
<td>06-01-96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,592,000</td>
<td></td>
<td>54.5</td>
</tr>
<tr>
<td>3</td>
<td>01-96-91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,571,000</td>
<td></td>
<td>56.2</td>
</tr>
<tr>
<td>3</td>
<td>96-91-86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,603,000</td>
<td></td>
<td>59.4</td>
</tr>
<tr>
<td>3</td>
<td>91-86-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,581,000</td>
<td></td>
<td>59.4</td>
</tr>
<tr>
<td>4</td>
<td>06-01-96-91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,173,000</td>
<td></td>
<td>45.4</td>
</tr>
<tr>
<td>4</td>
<td>01-96-91-86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,177,000</td>
<td></td>
<td>47.5</td>
</tr>
<tr>
<td>4</td>
<td>96-91-86-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,154,000</td>
<td></td>
<td>47.5</td>
</tr>
<tr>
<td>5</td>
<td>06-01-96-91-86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>882,000</td>
<td></td>
<td>38.6</td>
</tr>
<tr>
<td>5</td>
<td>01-96-91-86-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>850,000</td>
<td></td>
<td>38.3</td>
</tr>
<tr>
<td>6</td>
<td>06-01-96-91-86-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>647,000</td>
<td></td>
<td>31.5</td>
</tr>
</tbody>
</table>
Description and assessment of bias
- COMPASS, Stats NZ (Kirsten Nissen, Robert Didham, Wendy Dobson)

Ethnic mobility
- Robert Didham

Life-course predictors of mortality inequalities
- COMPASS, StatsNZ, UOW (Tony Blakely, June Atkinson) - HRC funded
- Link between NZLC and NZ Census Mortality Study, allowing assessment of socio-economic risk factors in (up to) 25 years leading up to death.
Linkage Bias - What is it?

A specific type of 'selection bias' (as it concerns us)

- Those selected (linked) differ from those unable to be linked
- X-Y associations in the selected sample differ from X-Y associations in the full sample
 - i.e., associations are biased by selection

![Diagram of X and Y connected to S]
Linkage Bias
- Why an issue with NZLC?

- There is incomplete linkage between Censuses
 - 31%-75% of theoretical population linked, depending on the cohort

- Linkage varies as a function of various factors
 - Age, Sex, Residential mobility, Deprivation, Relationship Status, Housing Tenure, Ethnicity

- With so many factors associated with linkage, it is possible that biased measures of association will be obtained

- Are associations biased?
Linkage Bias
-Why an issue with NZLC?

- CAN’T assess full extent of bias for longitudinal associations
 - Don’t know associations among the unlinked
- BUT each linked cohort is nested within another (or within a single Census)
- So, CAN assess bias of nested cohort against cohort (or Census) one level up. E.g.,
 - Among those linked back from 2006 to 2001, are 2006 associations biased?
 - Among those linked back from 2006 to 1996, are 2006-2001 associations biased?
Linkage Bias - Why an issue with NZLC?

- Assessed 2-way (X-Y) correlations between 30 (children) & 44 (adult) variables for
 - Full (linkable) Census in 2006; Sample linked from 2006 to 2001
 - Assess magnitude of difference between two sets of correlations

Children aged 5-14

- Proportion of correlations
- Magnitude difference between linked and full Census correlations
- 54%

Adults, aged 15+

- Proportion of correlations
- Magnitude difference between linked and full Census correlations
- 41%
Linkage Bias - Can we adjust for it?

- Calculated each individual's propensity to be linked, based on their characteristics
 - Logistic regression model including main effects only
- Weighted by inverse of these propensities in analyses (as per AusLC)

Children aged 5-14

- Unweighted: 68%
- Weighted - Main effects: 57%

Adults, aged 15+

- Unweighted:
- Weighted - Main effects: 57%
Linkage Bias
-Can we adjust for it?

- Calculated each individual's propensity to be linked, based on their characteristics
 - logistic regression model including main effects and interactions
- Weighted by inverse of these propensities in analyses (as per AusLC)

Children aged 5-14

- 73% difference

Adults, aged 15+

- 58% difference
Linkage Bias
- Can we adjust for it?

⚠️ Initial attempts suggest we can reduce bias but not eliminate it
 - Only tried one cohort with one approach
 - Other approaches being considered – tree regression

⚠️ Suggestion that associations less affected by bias with covariates controlled
 - Might this help with NZLC data?
 - Worked example: regress income against sex, age, ethnicity, deprivation, education (adults aged 20-69)
Linkage Bias
-Can we adjust for it?

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Full</th>
<th>Linked</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-24</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>25-29</td>
<td>$9,900</td>
<td>$11,000</td>
<td>$10,400</td>
</tr>
<tr>
<td>30-34</td>
<td>$15,600</td>
<td>$16,900</td>
<td>$16,300</td>
</tr>
<tr>
<td>35-39</td>
<td>$18,800</td>
<td>$20,200</td>
<td>$19,500</td>
</tr>
<tr>
<td>40-44</td>
<td>$20,300</td>
<td>$21,700</td>
<td>$21,000</td>
</tr>
<tr>
<td>45-49</td>
<td>$21,300</td>
<td>$22,700</td>
<td>$21,800</td>
</tr>
<tr>
<td>50-54</td>
<td>$21,000</td>
<td>$22,400</td>
<td>$21,500</td>
</tr>
<tr>
<td>55-59</td>
<td>$20,100</td>
<td>$21,400</td>
<td>$20,600</td>
</tr>
<tr>
<td>60-64</td>
<td>$16,200</td>
<td>$17,200</td>
<td>$16,400</td>
</tr>
<tr>
<td>65-69</td>
<td>$13,200</td>
<td>$14,000</td>
<td>$13,400</td>
</tr>
</tbody>
</table>

Diagram

- **Full**
- **Linked**
- **Weighted**

![Graph showing % discrepancy vs Age](image-url)
Linkage Bias
-Can we adjust for it?

<table>
<thead>
<tr>
<th>Highest Qualification</th>
<th>Full</th>
<th>Linked</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>School</td>
<td>$8,000</td>
<td>$8,000</td>
<td>$7,900</td>
</tr>
<tr>
<td>Trade</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Univ</td>
<td>$26,900</td>
<td>$27,500</td>
<td>$26,700</td>
</tr>
</tbody>
</table>
Linkage Bias
-Can we adjust for it?

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Full</th>
<th>Linked</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro</td>
<td>$2,800</td>
<td>$2,300</td>
<td>$2,700</td>
</tr>
<tr>
<td>Maori</td>
<td>-$700</td>
<td>-$200</td>
<td>-$200</td>
</tr>
<tr>
<td>Pacific</td>
<td>-$700</td>
<td>$0</td>
<td>-$100</td>
</tr>
<tr>
<td>Asian</td>
<td>-$7,500</td>
<td>-$7,300</td>
<td>-$7,200</td>
</tr>
<tr>
<td>MELAA</td>
<td>-$5,900</td>
<td>-$5,500</td>
<td>-$5,900</td>
</tr>
<tr>
<td>Other</td>
<td>$3,100</td>
<td>$2,800</td>
<td>$3,200</td>
</tr>
</tbody>
</table>
Linkage Bias
-Can we adjust for it?

<table>
<thead>
<tr>
<th></th>
<th>Full</th>
<th>Linked</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>-$16,700</td>
<td>-$18,100</td>
<td>-$16,900</td>
</tr>
<tr>
<td>NZDep</td>
<td>-$1,000</td>
<td>-$1,100</td>
<td>-$1,000</td>
</tr>
</tbody>
</table>
Conclusions

- Selection bias as a result of linkage seems a real concern with the NZLC
 - Some association greatly affected; others less so
 - Unadjusted associations more affected than covariate-adjusted associations (one example)

- Early attempts at weighting reduced bias but did not remove it
 - Different cohorts will be examined
 - Different approaches can be tried – Any suggestions?
Acknowledgments

- Stats NZ: Robert Didham, Kirsten Nissen, Wendy Dobson, Microdata Access team
- COMPASS team: Peter Davis, Roy Lay-Yee, Jessica McLay, Vera Puti Puti Clarkson
- Others: Tony Blakely, June Atkinson, Andrew Sporle, Alan Lee
Extra linkage to mortality will make bias adjustment even harder

- Never sure whether missed mortality links are in theoretical population or not
- If 200 (in a cell) died 2006-2011 and 150/200 linked to 2006 record, these are weighted 200/150 for NZCMS
- Can never be sure whether missed 50 belong to theoretical population able to be linked back to 2001 (i.e., had been in country for at least 5 years)
 - Might estimate from unlinked proportion of cell in theoretical population.