simario: An R Package for

simario: An R Package for Dynamic Microsimulation

2014 International Methodology Symposium

Statistics Canada, Gatineau, Québec

THE UNIVERSITY OF AUCKLAND

Whare Wānanga o Tāmaki Makaurau

Jessica McLay

COMPASS Research Centre Faculty of Arts University of Auckland New Zealand

The University of Auckland

What is Dynamic Microsimulation?

Whare Wānanga o Tāmaki Makaurau

THE UNIVERSITY OF AUCKLAND

Starting Dataset

Initial conditions at birth and year $1(Y_1)$

Statistical rules

How to transition

SIMULATION TOOL

Stochastic yearly update of child characteristics

 $Y_1 \rightarrow Y_2 \rightarrow Y_3 \rightarrow ... \rightarrow Y_N$

Outputs

E.g. means, frequency tables

SIMULATION TOOL

Base Virtual Cohort

SIMULATION TOOL

Scenario Virtual **Cohort**

Base **Outputs**

compare

Scenario Outputs

New Zealand

University of Auckland

Open source and free

- Anyone can install, use and further develop
- Availability of public critique and refinement
- Existing user base
- Designed for data analysis and manipulation
- Flexible

Why R?

- Massive 3rd party contribution
- Libraries for most anything statistical you may want to do

The simario R package

- Purpose: to provide a flexible framework of functions for creating a microsimulation in R
- R package: A collection of related R functions and other R objects (e.g. a dataset)
- Given the required csv files, use simario functions to programme your microsimulation model from start to finish, then run scenarios
- Illustration of simario:
 - Setting up (initiation files)
 - The simulation process
 - Outputs
 - Running scenarios
 - Viewing results

Two Types of Functions

- Simario functions:
 - Generic stand-alone functions, no reference to objects outside of the function
- Project-specific shell functions
 - Shell/outline for the programmer to complete with details of their specific microsimulation project

Model Initiation

■ Files needed prior to programming the simulation in R

- Starting dataset (.csv)
- Data dictionary file (.csv)
- Statistical sub-models (.csv)

Model Initiation

- Complete project-specific initiation function
 - Shell function provided (initDemo())
 - Point to the initiation csv files just discussed,
 - Imports statistical sub-models and starting dataset,
 - Creates objects in the R environment, e.g. empty lists and matrices that will be filled during the simulation
- Fill in other project-specific functions which are called by the initiation function

The Simulation Process

Calculate means of summary statistics


```
simulateRun <- function() {</pre>
Simulate Run 1
    Year 1
                                      for (year in 2:NUM YEARS) {
         Simulate disability state
                                        simulate_disability_state()
         Simulate qualification
                                        simulate qualification()
         Simulate IQ
                                        simulate IQ()
         Simulate earnings
                                        simulate earnings()
         Simulate alive / dead
                                        simulate alive()
         Save simulated values <
                                       >store current values in outcomes()
    Year 2
         Simulate disability state
         Simulate qualification
         Save simulated values
                                   for (i in 1:total runs) {
                                      simulateRun()
    Year 100
                                     map outcomes to run results()
    Calculate summary statistics
Simulate Run 2
                                   collate all run results()
Simulate Run M
```

Predict and Simulate Functions

COMPASS RESEARCH CENTRE FACULTY OF ARTS THE UNIVERSITY OF AUCKLAND

Tariction	Whan	e Wānanga o Tāmaki Makaurau		
	predSimNorm ()	predSim Binom()	predSimPois()	predSim NBinom()
Variable type	Continuous	Dichotomous	Continuous	Continuous
Type of statistical sub-model	Linear regression	Logistic regression	Poisson regression	Negative binomial regression
	Get predict	ed value for eac	h individual	
Random draw from	Normal dist.	Binomial dist.	Poisson dist.	Negative binomial dist.
Othor	SD= residual			D:

standard error

from model

New Zealand

Other

parameters

10

Dispersion

parameter

The University of Auckland

New Zealand

Outputs (Collated Results)

- Means
- Percentages
- Quantiles (min, 25th, 20th, 40th, median, 60th, 75th, 80th, max)
- Percentages for categorised continuous variables

Running Scenarios

Running Scenarios: Scenario **Specification**

None

New Zealand

The University of Auckland

Degree

Below Degree

Fill in cat.adjustment matrices (created by the initiation function)

Secondary School

	(%)	(%)	(%)	(%)
Year 17	NA	NA	NA	NA
Year 18	0	90	10	0
Year 19	0	85	15	0
Year 20	0	80	20	0
Year 21	0	25	25	50
Year 22	0	15	25	60
Year 23	0	15	25	60
Year 24	0	15	25	60
Year 25	NA	NA	NA	NA

Running Scenarios: "Adjusting" Data

(%)

(%)

25

Number Needed to Match

Requested Proportions

0

250

250

500

Degree

(%)

50

Number

to Change

21

152

250

-423

14

Aujusting	Data
Requested Propo	ortions:

Secondary School Below Degree None

(%)

25

Base

Simulation

21

402

500

77

Number in **Proportion in**

	Qual
	None
-	Secondary
	school

Below

degree

Degree

New Zealand

The University of Auckland

Year 21

Base Simulation 2.10% 40.20%

50.00%

7.70%

Subgroup Scenarios

- Idea for a program in high schools: Mentors to encourage 16 and 17 years old boys to finish school
- Scenario: For males only, increase proportion with a secondary school qualification at age 17/18
- Can program very specific subgroups
 - e.g. subgroupExpression <- "disability_state==1 & earnings>70000"
- Additional "by subgroup" outputs generated for subgroup scenarios:
 - e.g. means_by_subgroup, means_by_subgroup_base_data

The tableBuilder() Function

- Results can be viewed by
 - Looking at outputs automatically created
 - Using R manually to investigate/summarise the simulated data (which is stored for each run)
 - Using the tableBuilder() function

The tableBuilder() Function

tableBuilder(envName="Base", statistic="means",
variableName="earnings", grpbyName="sex", CI=FALSE)

gender			
NA		Male	Female
	40	51032	38178
	41	49042	38176
	42	49551	37326
	43	50504	38023
	44	49249	36675
	45	47808	35814
	46	45849	34173
	47	43938	34891
	48	44599	33541
	49	42912	33769
	50	41934	32245

Summary: Limitations and Disadvantages of simario

- Most suited to dynamic closed cohort models
 - Simulating a set group of individuals over time (no current capacity for individuals to enter or leave the simulation, births and deaths)
- Need to be confident using R
- Level of complexity to fitting all the functions together
- No current capacity for scenarios where the effect of one variable on another is changed

Summary: Advantages of simario

Simario provides a framework for creating a microsimulation model in R

- Good for scenarios that examine the effect of changing peoples actions
- Very flexible
 - Simulating variables
 - Specifying outputs
 - For a given variable, can use different parameters (statistical sub-models) for different cases
 - Confident R programmers can expand and change functions to suit their own purposes

Acknowledgments

RESEARCH CENTRE **FACULTY OF ARTS** HE UNIVERSITY OF AUCKLAND

Whare Wānanga o Tāmaki Makaurau

- Oliver Mannion
- Barry Milne
- Janet Pearson
- Mengdan Yu
- Roy Lay-Yee
- Martin von Randow
- Peter Davis

More information:

- simario to be published as an R package on CRAN for free download
- Article providing instructions on how to use simario to be published
- Code currently available on google code (search "simario")
- jessica.mclay@auckland.ac.nz

Appendix

FACULTY OF ARTS
THE UNIVERSITY OF AUCKLAND

Whare Wānanga o Tāmaki Makaurau

The Simulation Process

Simulating Reading score: Rule from statistical model:

E[reading score] = 13.00 + .91*reading.score.previous + .07*months.breast.fed + 1.04*father.tertairy.qualification + .87*father.secondary.qualification

	Child 1
Characteristics	
Reading score at age 8	40
Number of months breast fed	12
Father's Education	Secondary Apply Rule
Predicted reading score at age 9	13.00 + .91*40 + .07*12 + .87 = 50.58 Expected value
Random draw from a normal distribution	50.23 Stochastic
Reading score assigned at age 9	50 component

Starting Dataset

- One row per individual
- Provides the starting values from which to simulate all other variables and years

sex	IQ	qualification disability	y_state
1	81	1	1
1	72	1	4
1	88	1	1
1	103	1	1
1	101	1	1
1	91	1	1
1	110	1	2
2	111	1	1
2	112	1	1

E.g. Data Dictionary

New Zealand

Varname	Description	Codings_Expr
age	age	
sex	gender	c('Male'=1, 'Female'=2)
Alive	alive	c('Alive'=T, 'Dead'=F)
disability_state	disability state	c('No disability'=1, 'Mild disability'=2, 'Moderate disability'=3, 'Severe disability'=4)
IQ	IQ	
IQ_previous	IQ (prev year)	
qualification	highest qualification	c('None'=1, 'Secondary School'=2, 'Below Degree'=3, 'Degree'=4)
earnings	earnings to date	

Statistical Sub-Model

Variable

Ectimata

Sub-model for earnings:

variable	Ciassvaiu		Estimate
Intercept			5.23
IQ			0.03
age			0.13
age*age			0.00
qualification		1	-0.30
qualification		2	-0.13
qualification		3	0.11
qualification		4	0.32
sex		2	-0.16
sex		1	0.16
disability_state		2	-0.11
disability_state		3	-0.35
disability_state		4	-0.68
_Alpha			0.61

ClassVal0

New Zealand

The University of Auckland

The Simulation Process

Earnings outcomes from 1 run

Year / Age

Individual

	15	16	17	18	19	20	21	22
1	0	1200	1024	9084	7964	12236	8407	10005
2	0	4099	11148	3331	1896	4450	11829	8802
3	0	877	7913	4568	8763	4954	18273	13343
4	0	9927	9376	19271	16069	17514	12998	23982
5	0	6212	2656	43013	18059	21338	15455	89382
6	0	3881	33907	1356	7104	35060	24946	38773
7	0	985	10450	19073	32143	6613	4297	17246
8	0	42974	44194	12982	69105	7547	20857	4481
9	0	13514	30753	36516	20983	30387	37576	12393

New Zealand

The University of Auckland

The Simulation Process

run results	
run results	

Farnings

Farnings

Earnings mean of means

15

16

17

18

19

20

21

22

New Zealand

The University of Auckland

Year /	
Age	

	Edi	riiiigs	Edil	iiigs
	me	eans run 1	mea	ans run 2
	15	0	15	0
	16	13178	16	12562
	17	14461	17	13265
	18	16133	18	16501
	19	17556	19	18817
	20	19475	20	21040
/	21	21846	21	23968
	22	23976	22	23937

Mean Lower Upper 13013 12808 13132 14771 14566 15073 16210 16076 16341

run_results_collated

17968 16779 18728 19650 18745 20321 21817 21216 22387 23720 23309 24238 27

Zealand

New

R Object Structure

THE UNIVERSITY OF AUCKLAND

Whare Wānanga o Tāmaki Makaurau

```
env.scenario (10)
  (i) name : chr [1]
fixed.outcomes (0 items)

■ Immodules (1 items)

■ demo (6)

      (i) name : chr [1]
     ▶ Frun_results (2 items)

■ run_results_collated (11 items)

       freqs_by_subgroup (4 items)
           (ii) age_grp: num [100×18]
           (ii) alive: num [100×12]
           (ii) disability_state: num [100×24]
           (iii) qualification: num [100×24]
       means_by_subgroup (2 items)
           (iii) earnings: num [100×6]
           (ii) IQ: num [100×6]
       ▶ ☐ freqs_continuousGrouped_by_subgroup (2 items)
       freqs_by_subgroup_base_data (4 items)
         means_by_subgroup_base_data (2 items)
       ▶ freqs_continuousGrouped_by_subgroup_base_data (2)
       ▶ Freqs (4 items)
       ▶ Freqs_continuousGrouped (2 items)
         means (2 items)
         summaries (2 items)
```

The tableBuilder() Function

	Argument	Specifies:	Options / Examples
	envName	Which set of simulated data to use	Base or scenario
	statistic	Which statistic to calculate	frequencies, means, quintiles
	variableName	The variable on which to calculate the statistic	earnings
grpbyName		An optional variable to group the results by	disability_sta te
	CI	Whether to calculate confidence intervals	TRUE or FALSE
	logiset	An optional string expression that defines a group. Only data from this group will be using in calculating the specified statistics.	age>20 & age<65

New Zealand

The University of Auckland

Running Scenarios: "Adjusting" Data

Degree

(%)

50

Number

to Change

21

152

250

-423

30

Below Degree

(%)

25

Number Needed to Match

Requested Proportions

0

250

250

500

rajasting	
Requested Propo	ortions:

Secondary School

(%)

25

Number in

Base

Simulation

21

402

500

77

New Zealand

The University of Auckland

	•	•	•	-

Qual

None

school

Below

degree

Degree

Secondary

- (%) Year 21 0
 - **Proportion in**

None

Base

Simulation

2.10%

40.20%

50.00%

7.70%

Running Scenarios: "Adjusting" Data

Requested Proportions:

	• • •	.	
	No	ne	

Secondary School (%)

(%)

25

Number in

Base

500

77

Degree (%)

Year 21

New Zealand

The University of Auckland

Qual None Secondary

school

Below

degree

Degree

Proportion in Base **Simulation** 2.10%

40.20%

50.00%

7.70%

Simulation 21 402

Move 21

0 250

25 50 Number to Change

Below Degree (%)

Number Needed to Match **Requested Proportions**

21

152

250

Requested Proportions:

	None	Secondary School	Below Degree	Degree
	(%)	(%)	(%)	(%)
Year 21	0	25	25	50

After one step:

Qualification	Number	Proportion	Number to Change
None	0	0	0
Secondary school	423	42.3	173
Below degree	500	50	250
Degree	77	7.7	-423

The University of Auckland

New Zealand

Whare Wānanga o Tāmaki Makaurau

Requested Proportions:

	None (%)	Secondary School (%)	Below Degree (%)	Degree (%)
Year 21	0	25	25	50

After one step:

New Zealand

The University of Auckland

Qualification	Number	Proportion	Number to Change
None	0	_{ve 173} 0	0
Secondary school	423	42.3	173
Below degree	500	50	250
Degree	77	7.7	-423

33

Poguested Proportions

keq	uest	ea P	rop	orti	ons

0

None
(%)

Secondary School

(%)

25

Below Degree

(%)

Degree

25

(%) 50

Year 21

None

After two steps:

Secondary school

Qualification

Number

Proportion

25 250

67.3 673 423

Below degree

Degree

77 7.7

-423

Number to Change

The University of Auckland

New Zealand

Whare Wānanga o Tāmaki Makaurau

Requested Proportions:

	None	Secondary School	Below Degree	Degree
	(%)	(%)	(%)	(%)
Year 21	0	25	25	50

After two steps:

Qualification	Number	Proportion	Number to Change
None	0	0	0
Secondary school	250 _{Mov}	_{ve 423} 25	0
Below degree	673	67.3	423
Degree	77	7 7	-423

The University of Auckland

New Zealand