Hospital performance in New Zealand Variations in productivity and efficiency

Health Research

Te Hikuwai Rangahau Hauora

Jaikishan Desai Health Services Research Centre Victoria University of Wellington

Productivity and efficiency of hospitals in NZ

- Conceptually
- Measurement(ally)
- Realistically

Productivity - Conceptually

Technically

- Ratio of outputs to inputs
 - Multiple outputs, multiple inputs
 - So Output Index/Input Index
- Plain language
 - Amount of hospital services (output) produced with one unit of inputs

• Measurement

• Combining multiple outputs & multiple inputs into single indices (for ratio)

Efficiency - Conceptually

Technically

- Technical efficiency best combination of resources (inputs) to produce each output
- Allocative efficiency lowest cost combination of resources (inputs) to produce given outputs (in NZ context)
- Plain language
 - How efficiently are resources used to produce hospital services
- Measurement
 - Data envelopment analysis, Malmquist indices, stochastic frontier analysis

Measurement - Productivity

- Productivity index Pi_{it}
 - Productivity Index_{it} = Output Index_{it} / Input Index_{it}
 - i = hospital (or DHB), t = time period (month, quarter, year)
- Output Index_{it} = $\sum_{j} q_{ijt} w_{j}$
 - j = treatment types
 - q_{ijt} treatments of type j provided by hospital i at time t
 - w_i (constant) weight for treatment type j (DRG)
- Input Index = $\sum_{k} x_{ikt} w_{kt}$
 - xikt resource k used in hospital i at time t
 - w_{kt} weight (price) of resource k at time t

Measurement – Outputs & Inputs

- Outputs follow the flow
 - Day patient discharges
 - Length of stay
 - Inpatient discharges
 - Stats NZ & MoH weights
 - IP casemix adj. 85.5%; ALOS (7.5%); DP (7%)
- Inputs
 - Labor FTE by type
 - Capital ??
 - Consumables (intermediate consumption)

Productivity - Realistically

DATA

- Output DETAILED
 - National Minimum Data Set (NMDS) + Others
 - Discharges from all public (and private) hospitals
 - *Y_{ijt} individual i discharged from hospital j at time t*
 - j = 1 to 91, t = dates from 2001 to 2009
 - Y_i discharges differ by..
 - Individual characteristics (age, sex, deprivation, etc.)
 - Cause of admission (ICD-9, 10)
 - Factors reflecting hospital experience length of stay, mortality, post-OP sepsis, etc.
- Input data LIMITED
 - Limited temporal dimension
 - Bed capacity of hospital j (derived from NMDS)
 - FTE (HWIP) at best quarterly
 - Linked Employer-Employee Dataset (LEED) for labor counts
 - Household Labour Force Survey (HLFS)
 - Census

Productivity – Possibilities

- Limited input data
 - Quarterly FTE + financial reports + bed capacity available sources
 - At best quarterly productivity indices
 - More suited for temporal comparison than spatial differences
- Funding cycle's implications for resource allocation
 - Hard & soft constraints what interpretational value?
 - Does within-financial year variation reveal anything about resource allocation differences?

Output Indicators - LOS

Mean length of stay

Output Indicators – Day Cases

Proportion of day cases

Variation within a year - LOS

Variation within a year - Daycases

% times month has highest Daycases in financial year

Road ahead

Quarterly productivity indices

- Output index
 - Case-mix adjustment (DRG weights?)
 - Combining output indicators: day cases, EDs, length of stay, inpatient stays (#) using fixed weights
 - Quarterly (at best)
- Input index
 - Bed capacity based on NMDS (concurrent stays)
 - FTEs quarterly from HWIP
- Quality adjustment
 - Possibly using Principal components to combine Patient Safety indicators

Variation in productivity

- Multi-level modelling (MLM) of variation in quarterly productivity indices
 - Controlling for client population characteristics
 - Primary focus
 - Temporal variation
 - Spatial differences (across DHBs)
- Functional form
 - Discharge-level analysis with MLM
 - more n, lower standard errors
 - Hospital-level
 - smaller n, more conservative standard errors