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Topics for Today

e The Purpose of Modelling: A
System Dynamics Perspective

* Modelling to Enhance Learning

e Science & Public Discourse

e Examples

— Demand for Renal Replacement
Therapy (RRT)

- CVD



What are we trying to do when we model?
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“The macroscope filters details and amplifies
that which links things together. It is not used
to make things larger or smaller but to
observe what is at once too great, too slow,
and too complex for our eyes.”

The Macroscope: A New World Scientific System
Joel de Rosnay, 1979



The computel mé_dell_.ing process 1s to
the

A

mind what thetelescope and the
-

microscope ate'to the eye.

L Heinzg Pagels
Reason 1988




Computer Models:

(Tools to Challenge our Thinking)

...computer models faithfully demonstrate the implications of our assumptions and
information. They force us to see the implications,

true or false, wise or foolish, of the

assumptions we have made.

It is not so much that we want to

believe everything that the

computer tells us,

but that we want a

tool to confront us

with the implications

of what
we think
we know.




Could you make this?

(why or why not?)




An optical illusion?




...it all depends where you stand



Learning in and About Complex Systems

Real World

e Unknown structure

e Dynamic complexity

e Time delays

* Impossible experiments

Virtual World

/;nown Structure \ e Selected

e Controlled experiments

e Implementation
* Game playing

i isi * Enhanced learnin Information * Missing
* Inconsistency Decisions g formation | pelayed
e Short term . Biuced

e Ambiguous

Strategy, Structure,

e |nability to infer o1 Mental e Misperceptions
dynamics from Decision Rules Models e Unscientific
mental models * Biases

® Defensiveness

Sterman JD. Learning in and about complex systems. System Dynamics Review 1994;10(2-3):291-330.
Sterman JD. Business dynamics: systems thinking and modeling for a complex world. Boston, MA: Irwin McGraw-Hill, 2000.
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Increasing Leverage

....to see what is not immediately obvious
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STRUCTURE
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VALUES



....and what may happen through time

The Econom ist
December 2006



Knowing # Doing

“People are happy to add
to the pharmacopoeia;
they forget to swallow
the medicine.”

Stafford Beer, 1982



Science & Public Discourse

e How can the public be engaged in a way that leads
to competent deliberation using the best available
science?

e How can the science be engaged while taking
proper account of the limits of our knowledge and
the uncertainties inherent in even the best analysis?

* How can a process make use of quantitative
information while giving proper weight to
qualitative information?

* How can discourse proceed in ways that are
respectful of all viewpoints while encouraging
learning and change on the part of individuals and
groups?

Thomas Dietz
Chair of US National Research Council Committee “...one of the most integrative tools available to science”.
on Human Dimensions of Global Change
Professor of Sociology......

Michigan State University

From:
Van Den Belt, M. (2004). Mediated Modeling: A System Dynamics
Approach to Environmental Consensus Building. London, Island Press.




Data Z Numbers

Mental
Database
“[SD modellers]...would regard a series of
conversations with mothers about their
Written children to be as useful a source of information
Database . . . ”
as a twenty-year time series on fertility data.
Meadows, D., The Unavoidable A Priori
In
Randers, J., Ed. (1980). Elements of the System Dynamics Method
Numerical Cambridge, Productivity Press.

Database



Data #Z Precise Numbers

Problem
space

04
Model with
a complete
solution

problem

Model with
a partial sol

“A solution outlining cause and effect
relationships might be able to provide a clue to
the design of corrective roles or remedial
institutions counterbalancing poor outcomes of
existing causes and effects without carrying out
any precise measurements.”

Saaed, K. (1992). "Slicing a complex problem for system dynamics modeling."
Systems Dynamics Review 8(3): 251-261.







Problem #1: Rising Demand for RRT
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Problem #2: In-Centre Volumes

In-Centre
Volumes
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Dynamics of Renal Demand
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Service Improvement Increases Demand

Arrival of renal

In-Centre Patient Volumes
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0 iThink 9.1.3 - HEDHBE_Renal Model _200308.itm
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The projections produced by the model are influenced by
the assumptions made aboutthe demand for RRET and
the responses thatthe service can make to that demand.

unmet need due to service improvements

3
£
@
IS

This sets the inorease in patient
sdmissions, above the base
e incidence rate that is likely to
ooour as a result of bringing the
serice to Hawkes Bay and
% increasing dincial staffing,
= especialy the appeointmnet of a
full-time renal; physician.
=i developing supported self care units
T This desaibes the impact that the
'E i opening of supported self-care
= units is lkely to have on the
pecentage of dialysis patients
] reguiring in-centre facilities.
=
._% awyg diahysis survival
=
(=3
This desoribes the average
— survival, in years, of dialysis
patients.
-
e T T ————————— ) [

TE R

developing supparted seif care units This describes the timeline for the

development of supported
self-care units. The default case is
that it will take 5 years to bring on
stream the supported self-care
units needed to support the
strategy for a sustainable renal
SErVice.

i

rate unmanaged reguiring RRT

This specifies the rate at
which managed patients with
eGFR < 30 will meguire RRT

L]

rate managed requiring RRT

This specifies the rate at which
unmanaged patients with
eGFR < 30 will mequire RRT

This adjusts the number of
shifts being run in DUZ. At
the start of the simulation

DUZ shifts

Simulate




Future Dialysis Numbers:
(Baseline Scenario)
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Future Dialysis Numbers:
(Surfacing Unmet Need)
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Future Dialysis Numbers:

(Best Practice Care)
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Future Dialysis Costs:

(Surfacing Unmet Need & Increased Growth)
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Future Dialysis Costs:

(Best Practice Care)
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Plausible Futures:

(Numbers)
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Plausible Futures:
(Costs)
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Seeing Beyond Probable
(trend # destiny)

“Most organizations plan around what is most likely. In so doing they reinforce what is,
even though they want something very different.”

-- Clement Bezold

Types of Futures o Possible
| What may happen?
 Plausible
What could happen?
e Probable

What will likely happen?

e Preferable
What do we want to have happen?

Bezold C, Hancock T. An overview of the health futures field.

Geneva: WHO Health Futures Consultation; 1983 July 19-23.



EXAMPLE 2: CARDIOVASCULAR DISEASE



SD Model of Cardiovascular Disease:
(Concept Model)
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Modelling Policy Options
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Modelling Policy Options
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Modelling Tasks

— Transform historical information into a reference mode

— Transform experiential information into an aggregate
mental model or dynamic hypothesis

— Construct a structurally valid computer model subsuming
the dynamic hypothesis

— Understand model behavior and create confidence in its

hahavinaral validityv
NGOUCITIUVIVIAUI VUII\AILY

— Conduct experiments for policy design

Kahlid Saaed
Professor: Social Science & Policy Studies
Worcester Polytechnic Institute



Models as Teaching Tools

— The physical sciences have built up their body of knowledge
through extensive use of experimentation to test and refine
theory

— Whilst experimentation is central to the physical sciences it is
rare in the social sciences

— System dynamics provides a means of bringing
experimentation within the realm of the social sciences,
enhancing social science and social policy

Kahlid Saaed
Professor: Social Science & Policy Studies
Worcester Polytechnic Institute



