QUASI-EXPERIMENTAL HEALTH SERVICE EVALUATION

COMPASS | APRIL 2016

AIM & CONTENTS

Aim – to explore what a quasi-experimental study is and some issues around how they are done

- Context and Framework
- Review of NZ health service evaluation studies
- Case study Evaluation of the ITC project

CONTEXT & FRAMEWORK

QUASI-EXPERIMENTAL DESIGN

AUCKLAND & WAITEMATA PLANNING & FUNDING

EVALUATING CHANGE IN HEALTH SERVICES

- Change is constant and frequent
- Health service changes are typically complex
- Evaluation undertaken for learning and accountability
- Evaluation of outcomes is only a part of evaluation
- For outcome evaluation RCTs are best
 but frequently cannot be undertaken
- Quasi-experimental outcome evaluations may be feasible

WHAT IS A QUASI-EXPERIMENTAL STUDY?

Shadish & Cook (2002)

- Share experimental study's purpose of testing causal hypotheses about manipulable causes
- Share many of experiment's structural elements for counterfactual inference e.g. control groups, pre-tests etc
- But allocation is by self-selection or researcher control but not randomisation
- **Rosenbaum** (2010) "when investigators are especially proud of devices included to distinguish treatment effects from plausible alternatives..."
- **RCT** \leftarrow Quasi-experimental \Rightarrow Non-experimental

FRAMEWORK

REVIEW OF CURRENT PRACTICE

NEW ZEALAND HEALTH SERVICE OUTCOME EVALUATIONS

CURRENT PRACTICE

Review of 52 outcome evaluations

2010-2015

Using a data extraction tool

Design

Constructs - Control

Bias or threats

SEARCH

Search	Number of	Evaluations	
	results		
HIIR	1332	24	
Google	600	12	
Medline	421	7	
National Library	360	10	
NZMJ	694	18	
Total	3,407	52	

DESCRIPTION OF EVALUATIONS

	Number	Percent
Setting		
Primary care	11	21%
Community	22	42%
Hospital	10	19%
Outpatient	5	10%
National (Policy)	4	8%
Type of care		
Prevention	21	40%
Acute care	8	15%
Long term care	23	44%
Change made		
New service	22	42%
Model of care	14	27%
New role	7	13%
Quality improvement	4	8%
Policy	5	10%
Outcomes measured	•	
Health outcomes	49	94%
Efficiency	7	13%
Patient experience	3	6%

QUASI-EXPERIMENTAL DESIGN

Designs – two main types

- Non-equivalent control group designs
 - $O_1 \times O_2$
 - $O_1 _ O_2$
- Discontinuity designs
 - Interrupted time series designs
 - $O_{1} O_{2} O_{3} O_{4} X O_{5} O_{6} O_{7} O_{8}$
 - Regression discontinuity designs

With variations - Managing selection bias

Measured bias

- Variables selectors, prognostics, outcomes
- Methods Propensity scores, Inverse probability weights, regression etc

Unmeasured bias

- Intact group matching
- Difference in difference
- Instrumental variables
- Discontinuities

Study designs for evaluating the effects of healthcare interventions

Systematically Opinion paper Before-after study No collected data Yes) (No) Junip Comparison measurements Non-comparative study No between before and after (e.g. Case series) ptervention theistervention Retrospective case-control 10 Yes study No Intervention More than one Interrupted time series data registered group studied study Might to outcome Y= Prospective case-control study epeated ntervention Groups defined measures in the assigned by No same by interventions Investigators dyidyak (Ym) Yes Controlled before-after Yes No Repeated measures study Cohort design study nterventions Retrospective cohort Non-randomised trial No assigned study rendomly Y ==) (No) interventions xperimental Both Cluster randomised trial No assigned to interventions No Intervention (ndividuel) prospectiv prospective Yes) Y Yes Non-oonourrent ophort **Randomised trial** Prospective cohort study study

(Shaded boxes are study designs that should be considered for inclusion in EPOC reviews.)

Effective Practice and Organisation of Care Group (EPOC)

Cochrane Collaboration

DESIGNS - EPOC

Study type	Number	Percent
EPOC Included designs		
Non-randomised trial	3	5%
Controlled before and after	4	7%
Interrupted time series	11	20%
Repeated measures study	2	4%
Total	20	36%
EPOC excluded designs		
Uncontrolled before and after	28	51%
Cohort studies	6	11%
Case-control studies	1	2%
Regression discontinuity	0	0%
Intrumental variable studies	0	0%
Total	35	64%
Total studies	52	
Total study designs	55	

BIAS ASSESSMENT - INCLUDED STUDIES

Course of hiss	Design			
Cause of blas	NRT	СВА	ITS	RMS
Allocation to groups likely to cause bias	1	4		
Baseline outcomes different	1	1		
Baseline characteristics different	3	3		
Contamination of control	1	0		
Outcome assessment likely to be biased	1	1	1	0
Selective outcome reporting	0	0	0	0
Attrition likely to cause bias	1	1	0	1
Other events may have caused effect			8	0
No clear pattern of outcome change predicted			6	0
Intervention caused change in outcome assessment			0	0
Other bias	0	0	0	1
Number of studies	3	4	11	2

BIAS ASSESSMENT – EXCLUDED STUDIES

	Study type	
Cause of bias	Before-after	Cohort
Allocation to groups likely to cause bias		2
Baseline characteristics different		4
Contamination of control		0
Other events may have caused effect	9	2
Effect may have been caused by maturation of participants	3	0
Regression to the mean	20	0
Attrition likely to cause bias	13	2
Repeated testing of outcome may have led to change in response	3	0
Outcome assessment likely to be biased	9	2
Other problems with outcome measurement	3	1
Total studies	28	6

CONTROL OF CONSTRUCTS OF STUDY

All epidemiological studies can be hung on the GATE frame

EXAMPLES OF CONSTRUCT ISSUES

- Participants 1715 entered a new programme, 278 in evaluation no reason or comparison given
- Intervention evaluation of a assessment unit model of care unclear if the improved outcomes were due to the new care model or additional resources
- Control school lifestyle intervention control was different schools, from different regions, from different time period
- Outcomes Intervention to improve GP access un-validated patient experience measure with 80-90% positive on pre-test
- **Time** outcomes measured at last follow up "3 months to several years"

SUMMARY

- Only about a third of evaluations used a design that EPOC recommends including
- Of these ITS studies are the most common
- Selection bias is the biggest problem for controlled studies (despite DID)
- History threats are the biggest problems for ITS
- About a half of evaluation use only uncontrolled before and after studies
- These are very susceptible to regression to the mean
- Also troubled by history threats, attrition, and bias in assessment of outcomes

LIMITATIONS

- Small study precision
- Probably unrepresentative sample
- Single investigator and subjective decisions
- Limited by information in reports sometimes inadequate
- Unable to say cause of limitations
- New Zealand only study

INTEGRATED TRANSITION OF CARE

CASE STUDY OF A QUASI-EXPERIMENTAL EVALUATION

BACKGROUND

- Waitemata DHB has high rates of early readmission in older patients (75+)
- Assumed this was due to poor transitions from discharge back into the community
- Integrated Transition of Care Project was an attempt to improve transitions
- Selected patients judged to be at high risk of readmission on a predictive risk model (>20%)
- Intervention began in March 2012 and ran for a year
- Aim to reduce readmissions by 25% (from 26% to 20% 28 day readmission)
- 5,172 people treated
- Involved in design and evaluation from conception

INTERVENTION

QUASI-EXPERIMENTAL EVALUATION

DESIGN – REGRESSION DISCONTINUITY

DESIGN – INTERRUPTED TIME SERIES

BIAS – ITS DESIGN

MORE ANALYSIS

BIAS – OTHER EVENTS

- Opening of Assessment and Discharge Unit early 2011
- ED Waiting Times Health Target July 2009
- Bad Influenza season
- Other unidentified

DESIGN – INTERRUPTED TIME SERIES

BIAS – OTHER EVENTS

BIAS – OTHER EVENTS

BIAS – SELECTION

BIAS - OTHER

- Attrition 97% data outcome capture
- Instrument measurement bias unlikely as objective outcomes, no change
- Maturation not plausible
- Regression unlikely in ITS
- Testing not an issue
- Selective reporting of outcomes pre-specified in protocol

CONTROL OF CONSTRUCTS OF STUDY

All epidemiological studies can be hung on the GATE frame

CONTROL - PARTICIPANTS

Selection by investigator on predictive risk model threshold

Strengths

- Selection on known covariate (risk score) easy to create control group
- Can use regression discontinuity design

Weaknesses

- Unable to create risk score in control group for technical reasons

 difficult to create control group (or control ITS)
- Difficult to create risk score retrospectively – not completely sure of accuracy

CONTROL - INTERVENTION

Poor control over intervention – timing and contamination

ITS

Did not create rapid onset of intervention – due to development period

Regression discontinuity

Discharge planning improvement probably contaminated control group

CONTROL - OUTCOMES

Measured

Health system focussed

- Readmission
- ED attendance
- Mortality (underpowered)
- Other health service utilisation
- Health service cost

Existing data collections

Not measured

Patient focussed

- Patient experience
- Quality of life
- Functional status

Would have required new data collection

SUMMARY

- Early involvement in both intervention design and evaluation design
- Still trade off between two needs
- Research control over selection very important
- Able to use strong quasi-experimental designs
- Validity threats plausibility can be (partially) investigated by additional analysis
- Control over constructs is important we didn't make best use of it

FUTURE RESEARCH

Feasibility of strong QE Evaluation

5 further case studies

Do good QE evaluations produce internally valid results?

Systematic review of studies examining this question

Within study comparison