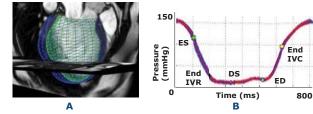
Heart failure patient stratification via estimation of myocardial tissue properties

Zhinuo J. Wang, Vicky Wang, Alistair Young, Martyn Nash, Jane Cao, The University of Auckland, New Zealand

Background


Heart failure (HF) is clinically categorised according to reduced or preserved ejection fractions (EF) of the left ventricle (LV) as a measure of pumping performance. However there is large heterogeneity in the underlying tissue level causes of HF. [1]

Aims

- Integrate magnetic resonance (MR) image and pressure measurement from catheterisation.
- Estimate subject-specific myocardial tissue passive and contractile parameters.
- Compare parameters estimated for normal and diseased subject groups.

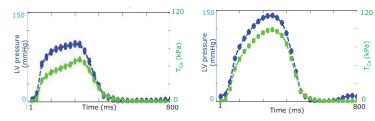
Methods

- Nine patient cases with dilated cardiomyopathy (DCM) and four normal cases were analysed.
- MR images were segmented to extract LV geometries throughout cardiac cycle and derive LV finite element model of geometry at diastasis. (Fig. 1A)
- LV pressures were extract from catheter measurements. Temporally aligned pressure traces with MR frames using valve timing. (Fig. 1B)
- LV mechanics was simulated using the aligned pressure traces as loading constraints, and the constitutive models given in Fig. 1C.
- Passive tissue properties and contractile tension transients were estimated to best match the simulated LV geometries with those tracked from the MR images throughout the cardiac cycle.

Passive:

 $W = C_1 e^Q$ where $Q = C_2 E_{ff}^2 + C_3 (E_{cc}^2 + E_{rr}^2 + 2E_{cr}) + 2C_3 (E_{fc} E_{cf} + E_{fr} E_{rf})$ Contractile:

$$T_a = T_{Ca}(1 + \beta(\lambda - 1))$$


Figure 1: (A):Finite element model of LV geometry extracted from MR images (using Cardiac Image Modeller). (B): Beat-averaged pressure temporally aligned with MR images. (C): Constitutive equations used in modelling: transversely isotropic equation [2], and active tension equation [3].

Results

- DCM cases had elevated myocardial tissue passive stiffness (C_1) in comparison with normal cases.
- There was no statistical difference in the maximum tissue contractile stress (T_{Ca}) between normal and DCM cases.
- The temporal profile of the contractile stress is similar to that of the LV pressure .

	Normal	DCM	T-test p-value
Preload (kPa)	0.5±0.2	1.4±0.6	0.0068
C1 (kPa)	1.1±0.1	6.6±3.6	0.013
Afterload (kPa)	14±1.9	14±3.2	0.90
Max. T _{Ca} (kPa)	71±15	83±15	0.21

Table 1: Averaged estimated passive and contractile parameters for the two subject groups with pressure at end diastole (preload) and end systole (afterload).

Figure 4: T_{ca} transients (green) overlaid with LV pressure (blue). One case from each of normal (left) and DCM (right) shown.

Conclusions

AUCKLAND

BIOENGINEERING INSTITUTE

- DCM and normal subjects could be stratified using myocardial tissue passive stiffness parameters.
- Novel method using subjectspecific pressure measurements allowed per-frame estimation of contractile stress transients and gives insight for myocardial contractile stress development.

Future work

- Analyse larger sample sizes for more conclusive statistical analyses for stratification.
- Estimation of patient-specific passive and contractile tissue properties has potential for assisting in making clinical decision for the treatment of HF.

References

[1] Borlaug B.A. Nature Reviews Cardiology 10.1038 (2014)

[2] Guccione J. et al. J. Biomech. Eng. 113(1) (1991)

[3] Hunter P.J. et al. Prog. Biophys. Mol. Biol. 69(2-3) (1998)

Acknowledgements

MARSDEN FUND TE PŪTEA RANGAHAU A MARSDEN