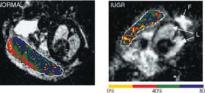

Using a placental blood flow model to interpret diagnostic images

Mabelle Lin¹, Merryn Tawhai¹, Joanna James², Alys Clark¹

¹ Auckland Bioengineering Institute, The University of Auckland, New Zealand, ² Department of Obstetrics & Gynaecology, FMHS, The University of Auckland


Intravoxel incoherent motion (IVIM) imaging

- MRI technique to quantify blood circulation in a capillary network from molecular diffusion in organs such as brain & liver [1]
- Assumes flow is a quasi-diffusion process due to randomly oriented capillaries

Placental IVIM imaging

- Safe and non-invasive
- Sensitive to MRI due to large blood volume in placenta
- Differences in perfusion distribution between normal and compromised pregnancies [2]
- However, association between IVIM measurements (f & D*) and physical properties of placental structures is unclear

Placental perfusion maps (From [2])

Open questions in placental IVIM imaging

• Unique compared to other organs as the placenta has **two interacting blood flows**:

Maternal blood: varying velocities & path lengths

> Fetal blood: branching capillary network

od: ties hs d: vork * Anatomy of human placenta (From [4])

AUCKLAND

BIOENGINEERING INSTITUTE

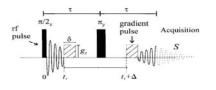
- How do flow profiles expected in the placenta influence MRI signal?
- Is IVIM adequate for quantifying blood flow in placenta?
- What is the physical significance of f, D and D* obtained from IVIM?

Fetal blood

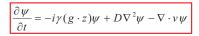
model

flow in a

branching


structure

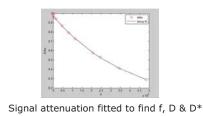
Methods


To answer these open questions in placental IVIM imaging, a IVIM model has been developed:

1) Calculate magnetisation:

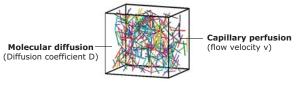
• Pulsed Gradient Spin Echo (**PGSE**) used in IVIM imaging:

- Change in magnetisation of spins (ψ) during PGSE is given as [3]:



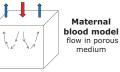
- ψ is solved using velocity fields from flow models
- Equation is solved using Lagrange-Galerkin method

2) Signal generation:


- Equally spaced sample points are seeded in the voxel
- Sample points are assigned ψ depending on whether they fall within or outside the capillaries
- ψ are summed over entire voxel to obtain signal

3) Predict flow properties:

Model verification


• A flow model with randomly oriented capillaries is set up:

- Able to correctly predict f, D and D* values for flow model
 D* aurorational to value
- D* proportional to v²

Next steps

Implement placental flow models in IVIM model

Investigate how signal is affected by perfusion in placenta

Model applications

- Provide physical interpretations for f, D and D* obtained from MRI scan results
- Assist in diagnosis of placenta-related
 pregnancy complications
- Useful tool to study normal and pathological placental development

References

[1] - Le Bihan, Denis, et al. "Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging." *Radiology* 168.2 (1988): 497-505.

[2] - Moore, R. J., et al. "In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI." *Placenta* 21.7 (2000): 726-732.

[3] - Kaufmann P, Scheffen I: Placental development. In, Neonatal and fetal medicine physiology and pathophysiology, Vol. 1. R Polin and W Fox, eds, pp 47-55. Saunders, Orlando 1992.

[4] - Stejskal, E. O., and J. E. Tanner. "Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient." *The journal of chemical physics* 42.1 (1965): 288-292.