

Fixing cerebral shunt catheter blockage

Dixon Leung, David Budgett, Daniel McCormick

Background

Hydrocephalus which causes

Shunting relieves ICP by

of implantation [2]

failures [3]

[1]

elevated intracranial pressure

removing excess cerebrospinal

fluid from the brain's ventricles

Obstruction account for 50% of

40% of shunts fail within 2 years

(ICP), affects 1 in 500 newborns

Drainage setup

- Clinical cerebral shunts have dimensions of (L = 170mm) & (r = 0.38mm)
 - Clinical unobstructed shunt flow of (Q = 2.5ml/min) was required
 - Following Eq. 1, the hydrostatic pressure was adjusted to ($\Delta P = 230 \text{mmH}_2\text{O}$) to achieve the desired flow

 $Q=rac{\Delta Pr^4}{8\mu L}$, where μ is the dynamic viscosity

Equation 1. Hagen-Poiseuille Equation

Peristaltic pumps were used to unblock catheters

Fig 2. Bench-top catheter obstruction drainage setup

Flow measurement setup

Fig 4. A graphical representation of the Hagen-Poiseuille equation

- Gage pressure sensors tapped pressure along the shunt-line
- NI USB-6009 DAQ card sampled pressure signals at 10Hz
- Flow rate calculated using Eq. 1

Future work

- Investigate the effect of microfiber length on time-course of obstruction
- Experiment with filler materials capable of coagulating microfibers
- Tune microfiber parameters to fit blockage flow profile patterns of clinical external ventricular drains

References

 National Institute of Neurological Disorders and Stroke. Hydrocephalus Fact Sheet. Retrieved February 11 2015, from http://www.ninds.nih.gov/disorders/hydrocephalus/detail_hydrocephalus.htm [2] Lutz. B., et al., New and improved ways to treat hydrocephalus: Pursuit of a smart shunt. Surgical Neurology International. 2013. 4(1) p. 538-550
[3] Kestle, J. et al., Long-term finlow-up data from the shunt design triat. Pediatric Neurosurgen, 2000. 33(5): p. 230-236.
[4] Lin, J. et al., Computational and experimental study of proximal flow in ventricular catheters: Technical note. Journal of Neurosurgery, 2003. 99(2): p.426-431.

Fig 1. Explanted catheters occluded at their proximal holes[4]

Replicating blockage

- A bench-top catheter drainage unit was built to investigated the effectiveness of flushing for unblocking catheters
- Catheter dimensions: 1.6mm x Ø7mm, Ø0.25mm drainage holes
- Microfibers were seeded into the drainage reservoir

Results

Accelerated catheter obstruction via seeded microfibers

- Flow reduced to 0.2ml/min within 20 minutes after microfibers were added (Fig. 3, Top)
- Patency was restored temporarily after a flushing procedure (Fig. 3, Bottom)
- Spikes could be explained by a sudden dislodge of fibers out of the drainage holes

The background shows a microscopic view of microfibers (≈20µm x 500µm) at a magnification of x150. Above is a scale of 100µm

Results

used to unblock Fig 2. Bench-top cathe