Fixing cerebral shunt catheter blockage

Dixon Leung, David Budgett, Daniel McCormick

Background

- Hydrocephalus which causes elevated intracranial pressure (ICP), affects 1 in 500 newborns [1]
- Shunting relieves ICP by removing excess cerebrospinal fluid from the brain’s ventricles
- 40% of shunts fail within 2 years of implantation [2]
- Obstruction account for 50% of failures [3]

Drainage setup

- Clinical cerebral shunts have dimensions of \(L = 170\text{mm} \) & \(r = 0.38\text{mm} \)
- Clinical unobstructed shunt flow of \(Q = 2.5\text{ml/min} \) was required
- Following Eq. 1, the hydrostatic pressure was adjusted to \(\Delta P = 230\text{mmH}_2\text{O} \) to achieve the desired flow
 \[
 Q = \frac{\Delta P r^4}{8\mu L}, \quad \text{where } \mu \text{ is the dynamic viscosity}
 \]
 Equation 1. Hagen-Poiseuille Equation
- Peristaltic pumps were used to unblock catheters

Flow measurement setup

- Gage pressure sensors tapped pressure along the shunt-line
- NI USB-6009 DAQ card sampled pressure signals at 10Hz
- Flow rate calculated using Eq. 1

Results

- Flow reduced to 0.2ml/min within 20 minutes after microfibers were added (Fig. 3, Top)
- Patency was restored temporarily after a flushing procedure (Fig. 3, Bottom)
- Spikes could be explained by a sudden dislodge of fibers out of the drainage holes

Replicating blockage

- A bench-top catheter drainage unit was built to investigated the effectiveness of flushing for unblocking catheters
- Catheter dimensions: 1.6mm x 0.7mm, 0.025mm drainage holes
- Microfibers were seeded into the drainage reservoir

Future work

- Investigate the effect of microfiber length on time-course of obstruction
- Experiment with filler materials capable of coagulating microfibers
- Tune microfiber parameters to fit blockage flow profile patterns of clinical external ventricular drains

References