

# A Computational Framework to Predict Subject-Specific Knee Kinematics from Static MRI

# Mousa Kazemi<sup>1</sup>, Kumar Mithraratne<sup>1</sup>, David Lloyd<sup>2</sup>, and Thor Besier<sup>1,3</sup>

<sup>1</sup>Auckland Bioengineering Institute, University of Auckland: <sup>2</sup>Centre for Musculoskeletal Research, Griffith University, Australia; <sup>3</sup>Department of Engineering Science, University of Auckland

### Background

- □ Estimating the kinematics and load sharing of the knee is critical to understanding the mechanical causes of knee disorders and osteoarthritis.
- □ The kinematics of the tibiofemoral joint are controlled by a combination of soft tissue constraints and articular contact.
- Existing musculoskeletal models rarely account for subject-specific articulating geometry or 6 DOF tibiofemoral kinematics.
- □ Finite element (FE) models derived from magnetic resonance imaging (MRI) offer a promising method to account for subject-specific geometry [2].
- □ Knee soft tissue constraints can be tuned to reproduce experimental data from knee laxity tests [1]. However, it is not known if this approach reproduces 6 DOF joint kinematics along gait cycle.

#### **Research goal:**

To determine whether a FE model developed from a static MRI can predict 6 **DOF** kinematics at the knee joint.



- Data Source: Sagittal plane MRIs of the knee from one healthy subject
- Outer surfaces of bones including their cartilage layers were seamented
- Point-clouds were meshed in CMISS environment
- Femur: 4913 Nodes and 4096 hexahedral elements
- Tibia-fibula: 4946 Nodes and 4124 hexahedral Elements

**Results and Discussion** 

represent the loaded knee kinematics.



- Materials: Bones and ligaments as rigid bodies and non-linear elastic springs respectively.
- Boundary Conditions: Femur constrained at 6DOF and tibiafibula unconstrained at certain flexion angles
- Contact: Frictionless sliding contact defined between tibial plateau and femoral condyles



 Resulted force-displacement and torque-angle profiles compared to the cadaveric experiment [2].



 Tibiofemoral contact areas and pressures at 30° of knee flexion. where joint only constrained by the soft tissue.



# **Next Steps**

Validating the predicted kinematics to weightbearing MRIs, adding menisci and patellofemoral joint to the model, and estimating knee kinematics and contact pressure are the next steps.

# References

[1] Baldwin et al., Computer Methods in Biomechanics and Biomedical Engineering, 2009. 12(6): p. 651-659. [2] Li et al., Annals of Biomedical Engineering, 2002. 30(5): p. 713-720.

[3] Blankevoort et al., Journal of biomechanics 24.11 (1991): 1019-1031.

# Acknowledgements

This research is supported by the Marsden fund.



Following calibration the model was capable of reproducing the anterior-posterior force displacement curves and internal-external torqueangle pattern [3] (rms = 1.32 and 1.26). Model predictions of knee kinematics were within the envelope of passive knee joint motions [fig.1]. The model was developed from an unloaded static MRI from one male subject. It remains to be seen whether these simulations will adequately ... Exp\_VV\_Rot(-JNm Ext\_Rot)

#### Varus-Valgus rotation as a function of function of flexion



Anterior-Posterior Tibial Translation as a