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Background

Q Estimating the kinematics
and load sharing of the
knee is critical to
understanding the
mechanical causes of knee
disorders and
osteoarthritis.

Q The kinematics of the
tibiofemoral joint are
controlled by a combination
of soft tissue constraints
and articular contact.

QO Existing musculoskeletal
models rarely account for
subject-specific articulating
geometry or 6 DOF
tibiofemoral kinematics.

Q Finite element (FE) models
derived from magnetic
resonance imaging (MRI)
offer a promising method to
account for subject-specific
geometry [2].

O Knee soft tissue
constraints can be tuned to
reproduce experimental
data from knee laxity tests
[1]. However, it is not
known if this approach
reproduces 6 DOF joint
kinematics along gait cycle.

Research goal:

To determine whether a
FE model developed from
a static MRI can predict 6
DOF kinematics at the
knee joint.

< Tibiofemoral contact areas and
pressures at 30° of knee flexion,
where joint only constrained by
the soft tissue.

« Simulations via FEBio (University
of Utah) thru SciPy algorithm

« Alteration of stiffness and slack
lengths of the ligaments thru a
bounded optimisation algorithm

“ Resulted force-displacement and
torque-angle profiles compared

to the cadaveric experiment [2]. 186 —
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Fig. 1 Comparison of predicted kinematics to cadaveric experiments



