
Background
BioSignalML
• Is an abstract framework to work with biosignal data and

metadata.
• It addresses challenges with data exchange and the use of

biosignals in physiological modelling software that are due
to a lack of standardisation in how metadata is represented
and assigned meaning.

• It uses Semantic Web standards for metadata — URIs,
RDF, and OWL.

• It works with existing data formats and standards, and
optionally uses HDF5 for efficient storage of large datasets.

• Enables development of web-based signal repositories
providing RDF and SPARQL services.

• Allows verification and transformation as data is retrieved
and used.

• Designed to facilitate data integration and to provide
metadata consistency, both within and between research
groups, and across a wide range of disciplines.

• Open, flexible, and extensible.
•

OpenCOR
• Is a cross-platform modelling environment for organising,

editing, simulating and analysing CellML models.
• Plugin architecture allows modular extension.
• http://opencor.ws

•

Resource Description Framework (RDF)
• Is an abstract framework to work with biosignal data and

metadata.
• Describes resources (things identified by a URI) using

statements in the form (subject, predicate, object).
• BioSignalML is built on RDF and specifies the types of

subjects and objects, and a vocabulary for predicates.
• A RDF software library is a key component of any

BioSignalML implementation.

BioSignalML in OpenCOR — an update:
David Brooks, The University of Auckland, New Zealand

BioSignalMLBiiiiBiBiiiiiiBBB iiii lllllllBiiiiiBiBBBBBBBBBBBBBBBBBBBBBiiiiooSSSSSooSSSoSigigggggiggggigggggggnannaananaannnnnalMlMlMMlMMlMlMllMMMMMLL

Adding BioSignalML to OpenCOR•

Implementation differences:
• BioSignalML software is written in Python, a modern, readable

language with good cross-platform support for RDF.
• OpenCOR is written in C++ and makes extensive use of the Qt5

framework.
• OpenCOR’s simulation data classes were declared as part of each

type of simulation. This hindered the ability to use common
methods to supply, store, visualise, and annotate data.
Simulation data has since been abstracted into a generic data
plugin with a cleaner software interface.

•

•

Option 1: Embed Python in OpenCOR.
• This would allow the direct use of existing BioSignalML code

inside OpenCOR.
• Would allow OpenCOR plugins to be written in Python.
• Would also allow OpenCOR users to use their own Python code

for post-processing of simulation results.
• This has been demonstrated in a Unix environment (OS/X), by

exporting simulation result sets into a BioSignalML repository (for
viewing and annotation), and also by applying a Fourier
transform to a simulation-derived signal, using Python’s scipy
package.

• However embedding Python is non-trivial under MS Windows, as
standard Windows’ Python is built using an older version of Visual
Studio than that used for OpenCOR. (Python version 3.5 and
Visual Studio 2015, both due late 2015, should resolve this
incompatibility.)

•

Option 2: Implement BioSignalML in C++.
• The main challenge is Microsoft Windows, as of the two open-

source C/C++ libraries for RDF, one (librdf) is not supported
under Windows, and the other (sord) does not support RDF/XML
nor the retrieval of RDF across a network.

• Microsoft’s C++ compiler (Visual Studio) still only has limited
support for the latest version of C++; this will improve with
Visual Studio 2015.

• Working with RDF in Python is easy because of the dynamic
nature of the language; this is harder in C++ as it is a static,
compiled language.

•

A RDF framework for C++:
• The aim iss to provide a generic framework for working with

typed RDF resources in C++.
• A general system has been implemented and used for defining

the BiosignalML RDF model in C++. It can also be used by other
C++ applications that need to process RDF.

• Meta-programming techniques (macros, templates, and code
generation) aere used to simplify mapping RDF structures into C
++ classes.

• Both sord and raptor (librdf’s RDF parsing library, its one
component that can be built under Windows) libraries have been
used to implement C++ classes for RDF.

The BioSignalML Recording class in C++:

Specification:
 class Recording : public Object
 /*---------------------------*/
 {
 TYPED_OBJECT(Recording, BSML::Recording)
 PROPERTY_STRING(format, DCT::format)
 PROPERTY_NODE(dataset, BSML::dataset)
 PROPERTY_NODE_SET(source, DCT::source)
 PROPERTY_NODE(investigation, DCT::subject)
 PROPERTY_NODE(investigator, DCT::creator)
 PROPERTY_DATETIME(starttime, DCT::created)
 PROPERTY_DURATION(duration, DCT::extent)
 PROPERTY_OBJECT(timeline, TL::timeline, RelativeTimeLine)
 PROPERTY_NODE(generatedBy, PROV::wasGeneratedBy)
 PROPERTY_OBJECT_RSET(signals, BSML::recording, Signal)
 PROPERTY_OBJECT_RSET(annotations, DCT::subject, Annotation)
 } ;
 } ;

Processing RDF:
// RDF graphs would usually come from a file or network resource, or via a SPARQL query.
 rdf::Graph graph(R"(<http://demo.biosignalml.org/examples/sinewave>
 tl:timeline <http://demo.biosignalml.org/examples/sinewave/timeline> ;
 dct:created "2003-01-01T10:00:00+13:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
 dct:description "Startdate 01-JAN-2003 X X X" ;
 dct:extent “PT5.5S”^^<http://www.w3.org/2001/XMLSchema#dayTimeDuration> ;
 dct:format "application/x-bsml+edf" ;
 dct:subject "X X X X" ;
 bsml:dataset <file:///recordings/f12a3f1e-8784-11e2-9e2f-00163edeed03.edf> ;
 a bsml:Recording .)", rdf::Graph::Format::TURTLE) ;
 bsml::Recording rec("http://demo.biosignalml.org/examples/sinewave", graph) ;
 std::cout << rec.uri() << std::endl ;
 std::cout << " Format: " << rec.format() << std::endl
 << " Investigation: "<< rec.investigation() << std::endl
 << " Timeline: " << rec.timeline()->uri() << std::endl
 << " Duration: " << rec.duration().to_string() << std::endl ;
Output:
<http://demo.biosignalml.org/examples/sinewave>
 Format: application/x-bsml+edf
 Investigation: X X X X
 Timeline: http://demo.biosignalml.org/examples/sinewave/timeline
 Duration: PT5.5S

Signal

Recording

bsml:recording

dct:format

source

Annotation

format

dct:source

duration

dct:extent

bsml:dataset

dataset

dct:subject

timeline

tl:timeline

starttime

dct:created

investigator

dct:creator

investigation dct:subject

generatedBy

prov:wasGeneratedBy

Hodgkin-Huxley simulation in OpenCOR

