

BAROREFLEX CONTROL OF IMPULSE CONDUCTION IN THE RIGHT ATRIUM

Jesse L. Ashton¹, Julian F. R. Paton², David J. Paterson³, Mark L. Trew¹, Ian J. LeGrice^{1,4}, Bruce H. Smaill^{1,4}. Email: jash042@aucklanduni.ac.nz.

Spatial & temporal filtering

¹Auckland Bioengineering Institute, University of Auckland, New Zealand; ²School of Physiology & Pharmacology, Bristol Heart Institute, University of Bristol, England; ³Department of Physiology, University of Oxford, England; ⁴Department of Physiology, University of Auckland, New Zealand.

BACKGROUND

- □ Studies show the autonomic nervous system can be involved in the induction and maintenance of atrial fibrillation (AF).
- **D** Episodes of paroxysmal AF are often preceded by progressive bradycardia due to activation of the vagus nerve: bradycardia could be part of the AF "substrate".
- □ What are the effects of vagal bradycardia on regional impulse conduction in the right atrium?
- How does nerve density relate to control of regional conduction?
- Mapping of optical action potentials used in conjunction with baroreflex model of bradycardia for the first time.

IN SITU PREPARATION OF THE RAT WITH REFLEX **AUTONOMIC FUNCTION**

D Rat heart and brain stem artificially perfused by pump via aorta.

- voltage-sensitive fluorescent dye (di-4-ANEPPS).
- □ Activation time defined at max positive gradient.

BAROREFLEX ALTERS DOMINANT PACEMAKER FIRING RATE AND LOCATION

- Baroreflex activated by acutely increasing perfusion flow rate resulting in a pressure challenge of ~45 mmHg over ~16 s.
- Reflex reduction in phrenic burst rate and sinus node firing rate.
- □ Shift in dominant pacemaker (site of earliest activation) to SA node tail.
- Conduction is fast parallel to CT muscle band but slow or blocked orthogonal to this structure.

FOUNDATION

NERVE DENSITY IS LOWER IN SA NODE TAIL

- Antibody labelling of cholinergic nerves and SA node pacemaker cells.
- Mount whole right atrial samples and image using slide-scanner.
- Further interrogate small volumes with confocal imaging.
- Segmentation using connected region-growing in 3D.
- Quantify density of nerves in different regions of the SA node.
- Preliminary result: nerve density is lower in subsidiary pacemaker regions in the SA node tail.

SUMMARY

SVC

- Methods have been developed to map atrial activation during baroreflex induced vagus nerve stimulation:
- Baroreflex activation alters dominant pacemaker firing rate and location and causes slow or blocked conduction around the SA node tail.
- Variation in cholinergic nerve density may contribute to control of dominant pacemaker location.